This article has originally been
published in German as part of the

Bernd Lutterbeck
Matthias Barwolff
Robert A. Gehring (Hrsg:)

Open Source
Jahrbuch 2006

Zwischen Softwareentwicklung und Gesellschaftsmodell

available at www.opensourcejahrbuch.de.

The Open Source Jahrbuch 2006 is an extensive compendium dealing
with the various aspects of open source software and beyond.
Whilst most articles have been written in German, this is one
of the articles that have originally been written in English and
subsequently been translated into German. Refer to our website
for more English articles as well as our translation wiki.

www.opensourcejahrbuch.de

A Look Inside Microsoft’s
Linux/Open Source Software Lab

BirL HILF*

®06

(CC-Licence 2.5, see
http:/ [creativecommons.org)

In the heart of what may be the world’s biggest Microsoft software environ-
ment we have built an open source software lab with the aim of understanding
open source software and to help with interoperability between our software
and that of the open source community. To this end we have employed a
number of open source experts and developers and created an impressive
environment of Linux and Unix machines. Microsoft is trying to understand
the nature of open source, and the structures and processes behind it.

Keywords: Linux-/Open-Source-Software-Labor - Microsoft - Cooperation
- Interoperability - Competition

1 Introduction

To say that the Linux/Open Soutce Softwate Lab at Microsoft is anything shy of an
incredibly ambitious research effort is an understatement. The lab houses more than
300 servers of all types and sizes that collectively run over 15 versions of Unix and
more than 48 different Linux distributions. It boasts a research team of senior-level
Linux and Unix programmers and system administrators, some of whom were the
chief architects of popular Linux distributions or authors of well-regarded books on
Unix. In short, it is one of the few labs in the world running this much equipment
with so much complexity and such a high level of expertise, all in the name of open
source research.

When I talk about the Linux/Open Soutce Software Lab and my involvement as
its director, the usual response is, “At Microsoft? Why manage Linux in a mixed

* Bill Hilf is the Platform Technology Strategy Director of the technology department Linux and Open
Source at Microsoft. There he is responsible for the Shared Source initiative since December 2005.

http://creativecommons.org

Bill Hilf

environment at Microsoft?” While theories abound—ranging from “Microsoft is
working on its own Linux implementation,” to “Microsoft is considering porting to
Linux”—the truth is, the Linux/Open Soutce Software Lab provides Microsoft with
a deep line of sight into the world of open source software and helps improve the way
Microsoft products work with Linux and a host of other open source applications.
Contrary to a common assumption that Microsoft is anti-open source, the reality is
not so black and white. Certainly, most customers don’t live in that either/or world.

They choose a technology—an operating system or an application—based on its
ability to solve a particular problem and to serve a certain business need, not based on
its development model. By running Linux and a variety of other open source software
(OSS) in a Microsoft environment, we are learning how those technologies can better
interoperate with Microsoft’s technologies, so that Microsoft customers can benefit
from a wider variety of interoperable software.

For instance, one of the issues we’ve worked hard to address is how Microsoft
management tools can do a better job in heterogeneous environments. So if a cus-
tomer is using Microsoft Systems Management Server (SMS) or Microsoft Operations
Management (MOM) tools and wants to be able to manage a Linux or Unix server,
we can provide input to our customers and to the Microsoft product teams based on
our testing of a variety of third party technologies that can be used to enable this type
of scenario.

Another example is the work the lab has done with the “Release Candidate 2 (R2)
version of Microsoft Windows Server 2003. It incorporates a variety of technologies,
collectively called the Subsystem for UNIX-based Applications that provide services
for interoperability with Unix and Linux systems. These technologies include Unix
network services like Network File Shating (NFS) and Network Information Service
(NIS). We’ve done extensive testing to see how well Windows Server 2003 R2 actually
interoperates with other UNIX and Linux systems. For instance, we’ve tested different
open-source applications, NFS and NIS running in that subsystem to see how inter-
operable those applications and services are with other elements in the data-center
environment.

2 Practicing the Art of Coopetition

While testing interoperability between open source software and Microsoft products
is one of the lab’s main objectives, it isn’t the only one. Another important objective
is a more competitive one—to help Microsoft build better products by deeply undet-
standing Linux and open source. We analyze, test and benchmark aspects of open
source software we want to compare to Microsoft products, such as various server
workloads, desktop scenarios, virtualization technologies, security technologies, man-
agement tools or just applications that are specific to certain vertical industries. We
use this analysis and feedback with the product teams so that they can address the

A Look Inside Microsoft’s Linux/Open Source Software Lab

results as they plan and build their products.

A recent example of this type of research is our testing of a beta 2 version of the
Microsoft Windows Compute Cluster Server 2003, which Microsoft just announced
last month as part of the company’s entrance into the high performance computing
(HPC) market. That market today is largely dominated by Linux. When the product
team first began building this product, they asked the Linux/Open Soutce Software
Lab to determine what the best possible HPC solution is from an open source
perspective.

Because our staff at the lab has a variety of expertise in HPC, we were able to build a
large clustered system and conduct extensive application testing. We did benchmarks
on the Linux side, and then we wiped out that installation and did the same testing on
the Windows Compute Cluster Server (CCS) using the same hardware and network
setup. We shared the results with the product team, so that they can understand the
strengths and weaknesses of the various Linux HPC solutions, which will help them
make Windows CCS a more compelling product to customers when it’s released next
year.

This art of “coopetition”, of competing with open source and at the same time
pursing interoperability as a common goal, is something that Microsoft knows well.
Both Microsoft and OSS technologies will continue to be around for years to come,
it’s important that Microsoft work toward both these goals simultaneously. As such,
the central objectives of the Linux/Open Soutce Softwate Lab reflect that larger goal.

3 A Piece of Fiber and a Hole in the Wall

Of course, there are different ways one could gain this kind of knowledge aboutopen
source software. It might be easier to rely on third-party interpretive data, but in many
ways that approach would be a lot like trying to understand a foreign country without
ever spending much time there. Buying Berlitz language CDs or a tourist travel guides
might make you feel like you’re a part of the culture when you visit, but you’ll remain
a tourist unless you actually live there for awhile.

Microsoft has embraced this philosophy in building the open source lab. Rather
than function as a third-party that’s trying to look in from the outside and understand
open source, the company wants instead to be deep in this space and have experts
who can provide fact-based, unbiased scientific information. It has directed the lab
to find the science that proves statements made about Linux, so that the company
doesn’t philosophize or guess what’s going on from the outside. By being a center of
competency around open source software for the rest of Microsoft, we at the lab can
provide hard data and conclusions from open source experts to Microsoft product
teams when they ask questions such as, “What’s the state of management tools in
Linux?” or “What’s the state of the Linux desktop?”

When Microsoft hired me in 2003 to build the Linux/Open Soutce Software Lab

Bill Hilf

and lead a team of Linux and Unix researchers so that the company could better
understand open source software, I had no idea how literal they were about my
“building the lab.”

Because the I'T department at Microsoft runs all-Microsoft software, I was charged
with building the lab so that it would reflect a true Linux/OSS environment. What
that meant was the company had an existing room for the lab, and that was all. During
the first days on the job, I stood in a very empty and cavernous room while some IT
guys on the floor overhead threaded a network cable through a freshly poked hole in
the ceiling. I was still standing there, staring at the piece of fiber in my hand, when
the IT guys came downstairs and said, “That’s it, that’s all we can give you. You're
kind of on your own from here.” Except for the walls, ceiling and that little piece of
cable, we literally had to build the lab from the ground up.

The first phase, of course, was to hite the staff, the most important asset the lab
would have. We now have a mix of fulltime employees and contractors, all of whom
have been expert developers or systems administrators in the open source community.
Some of the team members, such as Daniel Robbins, the founder of Gentoo Linux
who joined us earlier this year, have been chief architects or leads of Linux distributions.
Others have deep Unix expertise and are authors of popular Unix books ot tools. Some
are Linux/OSS security experts, embedded developets, virtualization and clustering
experts, ot developers with strong backgrounds in GTK+, GNOME/KDE, and
Localization. Additionally, we have members of the team familiar with running
Microsoft products in large data center environments, such as MSN. The breadth
of the expertise on the team is what’s most impressive, and nearly all of them have
experience working in large, highly mixed I'T environments.

The second phase involved building out the lab. In less than two years, we put
together a wide array of different technologies that use an enormous variety of
hardware, software and applications. With more than 300 servers from vendors as
wide-ranging as Dell, Hewlett-Packard, IBM, Microtel, Penquin, Pogo, and Sun, and
morte than 20 versions of Unix and 48 versions of Linux, which include lesser known
distributions like Asianux, CentOS and NetBSD, the Linux/Open Soutce lab has to
be one of the most unique research facilities devoted to open source discovery.

Because we run dozens of different versions of everything, we have the opportunity
to test open-source interoperability capability in a multitude of scenarios. And because
everything we do in the lab we do on our own, from running our own network and
security services to doing our own patching and updating, our environment mimics
real customers’ environments. I frequently tell the Microsoft product teams that if
their product makes it through this lab, it probably will survive 90 percent of the
Linux/Unix/OSS oriented customer environments out there.

A Look Inside Microsoft’s Linux/Open Source Software Lab

Operating Version/Distribution
System
Windows Windows 2000 Server, Windows Server 2003 Enterprise,
Windows Vista, Windows XP
Linux Arch Linux, Ark Linux, Asianux, Crux Linux, Debian,
Fedora Core, Foresight Linux, Freedows, Linux From Scratch,
Gentoo, Libranet, Mandrake Linux, Mandriva, MEPIS,
Novell Open Enterprise Server, Red Hat Enterprise Linux,
Red Hat Linux, Rocks, Slackware, SuSE Linux Enterprise Server,
SuSE Linux Standard Setver, SuSE Pro, Tinysofa, TurboLinux,
Vector Linux, Vida Linux, Ubuntu
Unix AIX5L, FreeBSD, OpenBSD, NetBSD, Solaris,
Java Desktop System
Others MacOS
Table 1: Installed operating systems at the Open-Source-Software-Lab
Vendor Hardware
Compagq Proliant DI.580, Proliant BI.10e, nx5000
Dell PowerEdge 2450, PowerEdge 4350, PowerEdge 1855,
PowerEdge 1500SC, Optiplex GX280, Optiplex GX270,
PowerEdge 1855, PowerVault 745N
HP Proliant D1.380, Proliant DI.585
HP Compaq nx5000, D530
IBM xSeries x342, xSeries x340, xSeries x330, xSeries x350,
pSeries 630
Microtel Computer System SYSMAR715
Neoware CA5
Pogo PW 1464, PW 1180, Vorticon64
Sun SunFire V240, SunFire V207, SunFire 280R
Toshiba Tecra M2, Protégé

Table 2: Hardware used at the Open-Source-Software-Lab (without customized products)

Bill Hilf

4 An Open Source Bubble Swimming in a Sea of Microsoft

One of the more interesting and unexpected dynamics at the lab is that this very large
Linux and Unix shop is surrounded by the world’s largest all-Microsoft environment,
which supports all of Microsoft’s employees. This includes the company’s Windows—
based security services, Internet proxies, mail services, human resource services, and
all the other systems that run the company.

So we’ve had to figure out ways that we can interoperate, not just within the lab, with
its incredibly complex environment, and not just with some aspect of the Microsoft
environment, such as Exchange or Active Directory, but between the lab and the rest
of Microsoft.

So many customers running mixed environments have asked how we manage
Linux, UNIX and other open source software (OSS) inside such a Microsoft-centric
IT environment. “How do you get these things to work together? How do you do
deployment of software? What kind of tools do you use?”

The breadth of management tools we use parallels the number of servers, operating
systems and other applications we have running in the lab. For software management
and distribution, we use tools like Microsoft Systems Management Server with Vin-
tela Management Extensions (VMX), Kickstart, Red Catpet, Portage and Red Hat
Network. To remotely manage the lab infrastructure, we use SSH, VNC, X-Windows
Tunneling and Windows Terminal Services. Again, it is unlikely any single customer
would use all of these tools. But we try to mimic a variety of scenarios that a multitude
of customers might be using so that we can deeply understand and hopefully play a
role in remedying the issues that are out there.

Having all of these different Linux-oriented workloads, servers, desktops, laptops,
software and device configurations inside such a huge Microsoft environment has
allowed us to experiment with and test interoperability on a daily basis. In the process,
we’re learning some very interesting things. Some of them are simple issues, like how
to get on the Internet running Linux in a Windows environment, and others are more
complex, like how to authenticate against Active Directory from Linux clients or how
to run OSS mail clients with Microsoft Exchange Setver, and so on.

5 Building and Testing Interoperability at the Lab

One of the more interesting areas of discovery that came about while testing inter-
operability in the management tools we use, focused on extending Microsoft Systems
Management Server (SMS) so that it can be used to manage Unix, Linux and even Ap-
ple systems. SMS was built so that it can use an open protocol called OpenWBEM to
communicate with other pieces of software, such as VMX;, that run on non-Microsoft
systems. By extending SMS using VMX in the lab, we’re able to use the SMS frame-
work to manage all of our servers and clients. This type of setup provides those in

A Look Inside Microsoft’s Linux/Open Source Software Lab

*Hii sms - [Systems Management ServerSite Database \Collectionshall Linuz B —31x]

File Action View Help

R EE R R

-‘% Systems Management Server A ||| Mame] Resource Class] Darnain I Site &
=2 Cg_ Site Database E‘NW System 77
+1-(0 Site Hierarchy B fe3xent System 77
Collections 3 clesg-lamp1 System 77
All AL Systems B clesg-lamp2 System 77
All HP-LX System: B rhels-test2 System 77
prp Sytems B hela-test1 System 77
N @, slesg-test1 System 77
¥ All Solaris Systems]
Al Systems @, rhel3-mysqll System 7T
5 all Unix Systems @,slesg-lam:ﬁ System 77
. all User Groups @,sless‘-lamp‘i System 77
b all Users @,sles‘?-webspherel System 77
All Windows 2000 Professional Systems B steso-test1 System 77
) all windows 2000 Server Systems B sleso-productiont System 77
All Windows NT Systems @,slesg»productionz System 77
¥ All Windows MT Workstation 4.0 Systems rhe]3»smhtnrturel System 77
All windows Server 2003 Systems B freedows-test1 System 77
b all Windows Server Systems network System 77
+ All Windows Workstation or Professional Sy) e 3tests System 77
é All Windows XP Systems > ||| & rheiz-monot System Ferhd
K| | L|_| < | LIJ

Fignre 1: SMS-Interface to manage the Linnx server at the Microsoft-Open-Sonrce-Lab

the lab used to working with Windows a familiar tool for managing non-Windows
systems, while at the same time providing our Linux and Unix researchers with the
management tools they’re familiar with, such as SSH clients, X-Windows and Red
Hat Config tools. Figure 1 is a picture of the SMS interface for managing our Linux
servers in the lab.

Another valuable lesson we’ve learned about using commercial third-party software
to extend Microsoft products involved using Centrify DirectControl solution to inte-
grate our Unix and Linux platforms with Microsoft Active Directory’s identity, access
and policy management services.

Before we started using DirectControl, if one of us wanted to log in to any of
our servers, we’d have to authenticate a username and password for each of those
servers—a daunting task when you have over 300 servers with a large mix of operating
systems in your environment. But by setting up an Active Directory domain so that
each of us has one domain username and password, we can access any type and number
of servers to which we are authenticated after logging on once to that domain. This
gives us a really powerful single authentication solution. Being able to authenticate
from a Linux server to an Active Directory server is something that many people are
not aware of—I’ve given presentations to CIOs who were unaware of these types of
solutions.

The Linux/Open Source Lab also played a role in helping Microsoft’s test suppott
for Linux into Microsoft Virtual Server 2005 SP1, which can virtualize both Linux and
Sun Solaris operating systems on servers running Windows. We tested this support

Bill Hilf

extensively using Virtual Server 2005 on a single machine to run all 48 of our Linux
distributions as guest operating systems. This setup allowed us to test drive different
Linux distributions and have all sorts of different servers running on a Microsoft
operating system without having to use separate servers for each Linux machine.

6 Helping Unix/Linux Pros Speak a Familiar Language Using
Windows

Having product interoperability is important, but a larger issue that many Unix and
Linux professionals have with Windows is familiarity.

As a long time Unix professional, one of the biggest hurdles for me in a Windows
data center was the lack of crossover between my language, which comprised my
Unix skills and knowledge, and the language of the Windows platform. There are a
variety of ways to approach this incongruity, such as using the Subsystem for Unix
Applications in R2 or by using a third-party product like CygWin, or even using a
virtualization product. But many of these are migration tools that really are more like
stepping stones for moving an application from one platform to another. What I
really needed was an integrated, technology that was part of Windows that could help
me, a long-time Unix professional, speak a familiar language on a Windows server.

Creating this type of technology is precisely what one of our Windows Server
management product teams is currently doing, Called Monad, it is an extraordinarily
powerful next-generation command line and shell environment for Windows that runs
on .NET. Microsoft’s vision for Monad is to enable simple automation for local and
remote administration by delivering a consistent, fast, comprehensive and composable
command line scripting environment that spans the Windows platform. For a Unix
pro, the ability to compose my command line and scripting environment in a way that
looks and behaves similar to what I've learned in a Unix/Linux world, gives me much
more control over my Windows environment and significantly reduces the barrier
between moving between Unix and Windows.

One of the things the Linux/Open Soutce Lab is doing with Monad involves
writing plug-ins using a popular open source tool called VIM (VI Improved) to call
on Monad. One of our researchers used VIM, which edits text files and code, to write
a plug-in that calls on Monad to digitally sign a script when the script is ready to be
deployed. The advantage of using a plug-in like this is that it allows VIM users (a
latge population in the Linux/Unix wotld) the ability to extend their favorite tool into
monad while simultaneously adding value to Monad. We use Monad extensively in
the lab to for administration tasks and we are looking at a variety of other scenarios
similar to using this VIM plug-in that can help the Unix/Linux uset community feel
at home in the next generation Windows command line and scripting environment.

A Look Inside Microsoft’s Linux/Open Source Software Lab

5153
4642
3971
1123
411

Red Hat 7 SuSE 7.1 Red Hat 9 SuSE 8.2 SuSE 9.2

(2.2.24) (2.2.19) (2.4.20) (2.4.20) 2.6.8)
9/2000 10/2001 3/2003 4/2003 10/2004

Figure 2: Number of file changes between the original Linux Kernel (from kernel.org) and the same
version of that kernel provided by the corresponding Linux distribution

7 Using Science to Test Perceptions

We also hear from customers a variety of broad assumptions around Linux, Open
Source and Windows. We use our lab to analyze these perceptions and rely on science,
versus ideology or belief, to test these perceptions.

For example, a common perception about Linux is that it will run on just about
any piece of hardware, so we decided to test legacy hardware support for Linux to see
if that perception was true.

We tested eight current Linux distributions, including SuSE Pro 9.2, Xandros and
Fedora Core 3, along with Windows XP and Windows Server 2003, by attempting to
install each of them on computers representative of the average computer available in
1995, 1997, 1999 and 2001. This was not a “Can you modify the operating systemr”’
test; it was simply an out-of-the-box installation from a CD-ROM. If we were able to
successfully install the operating systems, we then looked at their performance. What
we found was that there were not many cases in which a modern Linux distribution
could run on PCs that were older than what Windows could run on as well. So in this
example, we were able to use science to disprove a common perception.

We also track other open source software dynamics, such as how different the
commercial and non-commercial distributions of Linux are from their original open
source projects. The chart in 2 illustrates some of these differences—the number of
files changes between the original open source Linux kernel (from kernel.org) and
the same version of that kernel as shipped by a commercial Linux distribution. This
allows us to better understand the “community versus commercial” dynamics at work
in the open source model.

In addition, we attempt to quantify the ecosystems so that we can understand the

Bill Hilf

real numbers underneath the market trends. For example, last August we counted
the number of supported PCs and servers for Red Hat and Novell SuSE operating
system products and compared those against our own supported hardware numbers.

We looked at certified systems for three versions of Red Hat Entetptise Linux:
versions 2.1, 3 and 4, and found that these versions supported 241, 745, and 173 server
systems respectively (http://bugzilla.redhat.com/hwcert/). SuSE Linux Enterprise
Server version 8 had 490 certified systems and version 9 had 537 (http://developer.
novell.com/yessearch/Seatch.jsp). On the desktop Red Hat Desktop supported
360 systems while Novell Linux Desktop 9 supported 165. These numbers stand in
stark contrast to the number of certified systems for Microsoft Windows Server 2003,
which is more than 5,000 and for Windows XP, which is over 85,600.

This type of analysis helps us understand the real size and growth of the current
market-leading Linux distributions and how Windows compares. It also gives us an
indication of what type of systems customers might be using to deploy with, which in
turn helps us to understand the configurations of our lab.

8 Diving Deep Into the Sociological Aspect of Open Source

One of the most significant areas of open source software that the lab looks closely at
is the phenomenon of community development, and it is one of the key characteristics
that Microsoft is learning from the open source community.

We spend about 20 percent of our time learning about this process and helping
Microsoft developers and testers also learn how they can be more aware of and ensure
Microsoft products are more accessible to the development community. As engineers
and technologists, they are fascinated by this model—they want to understand how
testing actually happens in this collaborative community; what tools are used; how test
cases are written; how bugs are filed, tracked and regressed; and what type of training
testers have had. We approach the community model objectively, analyzing the good
and the bad aspects of it, separating fact from fiction, so that we fully understand
the engineering pros and cons of community development without the surrounding
philosophy and hype.

The community development model has helped Microsoft find new ways to think
about its own development projects, such as Microsoft Shared Source, and how it can
take better advantage of the community process.! Educators from our lab work with
the product teams to ensure they’ve thought through all the elements of what it’s like
to use this process and what types of issues are likely to surface. And just being able
to engage with the open source community about how it develops softwate has also
helped Microsoft mature its thinking around how to participate with developers who
are building software using different development models.

1 Information about Microsoft Shared Source are available at http:/ /www.microsoft.com/sharedsource

10

http://bugzilla.redhat.com/hwcert/
http://developer.novell.com/yessearch/Search.jsp
http://developer.novell.com/yessearch/Search.jsp
http://www.microsoft.com/sharedsource

A Look Inside Microsoft’s Linux/Open Source Software Lab

In turn, the lab over the past two years has become a kind of gateway for open
source developers at the engineering level who need to communicate with Microsoft.
For example, when they’re working on an interoperability issue with a Microsoft
product and have questions, they increasingly are contacting us. Here they find
other developers and researchers who understand the open source community, their
language and their issues. This has to be a positive development—for too long
Microsoft and the open source community have been regarded as separate realities.
Just the idea that there might be some bridge-building happening on this level is very
encouraging, so we’re progressing in this realm with real results.

9 Looking Forward: The Future of Open Source

Another aspect of research we’te putsuing at the Linux/Open Source Software Lab
is the historical trending of open source software. We’ve done deep analysis of the
last major versions of the Linux kernel in an attempt to answer a number of questions
about its evolution. Is the code getting simpler or increasingly more complex? Does
it have more or fewer defects every year? Is it growing larger or getting smaller? Is
it becoming more or less efficient? Through all this research, we’ve identified three
common trends.

First, if you focus only on the software characteristics and the code, open source
software appears to be growing fairly lineatly. So every year the lines of code increase,
complexity grows as a result, and, of course, with complexity comes more defects.
This isn’t surprising, nor is it a knock against open source software—this is how
all software, commercial or non-commercial, has evolved. This growth is not to
be confused with the modularity of open source software. Many people mistakenly
believe that if something is modular, it doesn’t grow and is always simple to maintain.
This is not the case—even with modular software there’s still growth.

What may be unique to open source software, however, is whether the community
development model will be able to continue to adequately respond to this increasing
complexity. Can this loosely coupled model, in which developers work on and
distribute Linux in different areas around the world with very loosely defined authority,
planning, testing, or structure, sustain the growth of the software? Or is it possible
that because of the way the community development model works, the software could
plateau rather than continue to grow and get more complex?

Again, this is a software engineering research question—we are not looking for a
positive or negative answer. This is something we’re watching closely and something
we are investigating in other open source applications beyond the kernel.

The second trend we’re seeing is the growth of commercial and professional open
source software companies. Over time, we have tracked the developer contributions
for various OSS, identifying who is working on the code. By looking at research
in the repositories, academic research in this area, and our communication with the

11

Bill Hilf

community, the pattern has been clear: Over the past five years or so, more and
more contributions are coming from developers employed by a commercial entity
that either directly makes money from the OSS project (such as MySQL or JBoss) or
indirectly through hardware, commercial software and services (IBM, Novell, HP).
To those in the OSS developer community, it’s not a huge surprise, but to those in
the broader market who might still believe that people are working on Linux or other
OSS projects “in their free time,” it is often a surprise.

The third trend we are seeing is a market realization of the OSS model overall—what
the essence of the phenomenon really is. In surveying and analyzing the large amount
of open source software available, a large amount of these projects are system software
that has been developed for other developers or system administrators. So I think it’s
fair to say that in the larger, historical perspective, open source software has largely
been a developer phenomenon. And therein lies an essential difference between how
commercial software companies build software and how open source works today:
Commercial software companies design and engineer software to serve a customer
need, whereas open source software is largely designed by and for developers and
technical users.

In some domains this phenomenon is quite powerful and has enabled rapid growth
in various areas. Of course, there are some exceptions, but this differentiator that is
becoming more apparent in modern thinking around open source software. Moreover,
it shows that a variety of development models can and will coexist in the software
ecosystem—indeed, we have found that many popular OSS server applications have
a large and growing business on Windows (such as JBoss and MySQL).

10 Adding Value by Providing a Balanced View of OSS Trends

By exploring the dynamics of the open source software phenomenon in an impartial
and unbiased manner that relies on hatd technical data, the Linux/Open Soutce
Software Lab at Microsoft has been able to drive improvements and changes to both
internal Microsoft groups and customers who have asked us to look into common
Linux/OSS questions and issues. And while we’re very proud of the work we’ve
accomplished so far, by continuing to practice the fine balance between cooperation
and competition with open source software, we are equally confident that our future
research will benefit Microsoft, its customers and partners, and the open source
community. It is an exciting time indeed!

12

