
This article has originally been
published in German as part of the

GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA Everyone is
permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom
to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all
its users. This General Public License applies to most of the Free Software Foundation‘s software and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom,
not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you recei-
ve source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights,
we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distri-
bute copies of the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you
have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1)
copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author‘s protection and ours, we want
to make certain that everyone understands that there is no warranty for this free software. If the software is modifi ed by someone else and passed on, we want its recipients to know that
what they have is not the original, so that any problems introduced by others will not refl ect on the original authors‘ reputations. Finally, any free program is threatened constantly by
software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we
have made it clear that any patent must be licensed for everyone‘s free use or not licensed at all. The precise terms and conditions for copying, distribution and modifi cation follow. TERMS
AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying
it may be distributed under the terms of this General Public License. The „Program“, below, refers to any such program or work, and a „work based on the Program“ means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifi cations and/or translated into another
language. (Hereinafter, translation is included without limitation in the term „modifi cation“.) Each licensee is addressed as „you“. Activities other than copying, distribution and modifi ca-
tion are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents consti-
tute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute
verbatim copies of the Program‘s source cod e as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program. You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify
your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifi cations or work under the terms of Section 1 abo-
ve, provided that you also meet all of these conditions: a) You must cause the modifi ed fi les to carry prominent notices stating that you changed the fi les and the date of any change. b)
You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License. c) If the modifi ed program normally reads commands interactively when run, you must cause it, when started running for such interactive
use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the Program is not required to print an announcement.) These requirements apply to the modifi ed work as a whole.
If identifi able sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms,
do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the dis-
tribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of deriva-
tive or collective works based on the Program. In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a
volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may copy and distribute the Program (or a work based on it, under Sec-
tion 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following: a) Accompany it with the complete corresponding
machine-readable source code, which must be distributed under the terms of Sectio ns 1 and 2 above on a medium customarily used for software interchange; or, b) Accompany it with
a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy
of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or, c) Accompany it with the in-
formation you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in
object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form of the work for making modifi cations to it.
For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface defi nition fi les, plus the scripts used to control compi-
lation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable. If distri-
bution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense, or distribute the Pro-
gram except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full com-
pliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your

Open Source
Jahrbuch 2006

Bernd Lutterbeck
Matthias Bärwolff
Robert A. Gehring (Hrsg.)

Zwischen Softwareentwicklung und Gesellschaftsmodell

O
pen Source Jahrbuch 2006

B. Lutterbeck
M

. Bärw
olff

R. A
. G

ehring

�������������� ������

Bill Hilf: „Das Community-Entwicklungsmodell hat Microsoft
dabei geholfen, neue Denkansätze über eigene Entwicklungsprojekte
[…] zu verfolgen und darüber nachzudenken, wie der Prozess der ge-
meinsamen Entwicklung von Produkten aufgegriffen werden kann.“

Lawrence Lessig: „Ich befürworte das Remixen. [...] Die Freiheit,
mit Technik Kultur wiederzuerschaffen, wird unser Denken über
Kultur verändern. [...] Solange nicht zwingende Staatsinteressen
dagegen sprechen, sollte diese Freiheit gesichert werden.“

Eben Moglen: „[D]iejenigen, die glauben, eine Lizenz sollte sämt-
liche sozialen und politischen Inhalte vermeiden [...], haben sich [...]
der Tatsache zu stellen, dass das Produktionssystem, von dem sie
profi tieren, auf ethischer Reziprozität und dem Copyleft basiert.“

Joseph Weizenbaum: „Ein Vorbild zu sein ist eine der wichtigs-
ten Funktionen der Free-Software- bzw. Open-Source-Bewegung. Ich
meine das so ernst, wie ich nur kann. Es zeigt, dass ein anderer Weg
möglich ist.“

Die Autoren dieses umfangreichen Kompendiums geben dem Leser in
einer erfrischenden Mischung aus wissenschaftlicher Forschung, praktischen
Erfahrungsberichten und konkreten Handlungsempfehlungen wertvolle
Anregungen für die Entwicklung eigener Strategien und Ideen. Damit
wendet sich auch das dritte Open Source Jahrbuch an eine breite Leserschaft
aus Wirtschaft, Verwaltung und Wissenschaft.

Zitate aus dem Buch

available at www.opensourcejahrbuch.de.

TheOpen Source Jahrbuch 2006 is an extensive compendium dealing
with the various aspects of open source software and beyond.
Whilst most articles have been written in German, this is one
of the articles that have originally been written in English and
subsequently been translated into German. Refer to our website
for more English articles as well as our translation wiki.

www.opensourcejahrbuch.de

A Look Inside Microsoft's
Linux/Open Source Software Lab

BILL HILF∗

(CC-Licence 2.5, see
http://creativecommons.org)

In the heart of what may be the world's biggest Microsoft software environ-
ment we have built an open source software lab with the aim of understanding
open source software and to help with interoperability between our software
and that of the open source community. To this end we have employed a
number of open source experts and developers and created an impressive
environment of Linux and Unix machines. Microsoft is trying to understand
the nature of open source, and the structures and processes behind it.

Keywords: Linux-/Open-Source-Software-Labor · Microsoft · Cooperation
· Interoperability · Competition

1 Introduction

To say that the Linux/Open Source Software Lab at Microsoft is anything shy of an
incredibly ambitious research effort is an understatement. The lab houses more than
300 servers of all types and sizes that collectively run over 15 versions of Unix and
more than 48 different Linux distributions. It boasts a research team of senior-level
Linux and Unix programmers and system administrators, some of whom were the
chief architects of popular Linux distributions or authors of well-regarded books on
Unix. In short, it is one of the few labs in the world running this much equipment
with so much complexity and such a high level of expertise, all in the name of open
source research.
When I talk about the Linux/Open Source Software Lab and my involvement as

its director, the usual response is, �At Microsoft? Why manage Linux in a mixed

∗ Bill Hilf is the Platform Technology Strategy Director of the technology department Linux and Open
Source at Microsoft. There he is responsible for the Shared Source initiative since December 2005.

http://creativecommons.org

Bill Hilf

environment at Microsoft?� While theories abound�ranging from �Microsoft is
working on its own Linux implementation,� to �Microsoft is considering porting to
Linux��the truth is, the Linux/Open Source Software Lab provides Microsoft with
a deep line of sight into the world of open source software and helps improve the way
Microsoft products work with Linux and a host of other open source applications.
Contrary to a common assumption that Microsoft is anti-open source, the reality is

not so black and white. Certainly, most customers don't live in that either/or world.
They choose a technology�an operating system or an application�based on its
ability to solve a particular problem and to serve a certain business need, not based on
its development model. By running Linux and a variety of other open source software
(OSS) in a Microsoft environment, we are learning how those technologies can better
interoperate with Microsoft's technologies, so that Microsoft customers can bene�t
from a wider variety of interoperable software.
For instance, one of the issues we've worked hard to address is how Microsoft

management tools can do a better job in heterogeneous environments. So if a cus-
tomer is usingMicrosoft Systems Management Server (SMS) orMicrosoft Operations

Management (MOM) tools and wants to be able to manage a Linux or Unix server,
we can provide input to our customers and to the Microsoft product teams based on
our testing of a variety of third party technologies that can be used to enable this type
of scenario.
Another example is the work the lab has done with the �Release Candidate 2� (R2)

version of Microsoft Windows Server 2003. It incorporates a variety of technologies,
collectively called the Subsystem for UNIX-based Applications that provide services
for interoperability with Unix and Linux systems. These technologies include Unix
network services like Network File Sharing (NFS) and Network Information Service
(NIS). We've done extensive testing to see how well Windows Server 2003 R2 actually
interoperates with other UNIX and Linux systems. For instance, we've tested different
open-source applications, NFS and NIS running in that subsystem to see how inter-
operable those applications and services are with other elements in the data-center
environment.

2 Practicing the Art of Coopetition

While testing interoperability between open source software and Microsoft products
is one of the lab's main objectives, it isn't the only one. Another important objective
is a more competitive one�to help Microsoft build better products by deeply under-
standing Linux and open source. We analyze, test and benchmark aspects of open
source software we want to compare to Microsoft products, such as various server
workloads, desktop scenarios, virtualization technologies, security technologies, man-
agement tools or just applications that are speci�c to certain vertical industries. We
use this analysis and feedback with the product teams so that they can address the

2

A Look Inside Microsoft's Linux/Open Source Software Lab

results as they plan and build their products.
A recent example of this type of research is our testing of a beta 2 version of the

Microsoft Windows Compute Cluster Server 2003, which Microsoft just announced
last month as part of the company's entrance into the high performance computing
(HPC) market. That market today is largely dominated by Linux. When the product
team �rst began building this product, they asked the Linux/Open Source Software
Lab to determine what the best possible HPC solution is from an open source
perspective.
Because our staff at the lab has a variety of expertise in HPC, we were able to build a

large clustered system and conduct extensive application testing. We did benchmarks
on the Linux side, and then we wiped out that installation and did the same testing on
the Windows Compute Cluster Server (CCS) using the same hardware and network
setup. We shared the results with the product team, so that they can understand the
strengths and weaknesses of the various Linux HPC solutions, which will help them
makeWindows CCS a more compelling product to customers when it's released next
year.
This art of �coopetition�, of competing with open source and at the same time

pursing interoperability as a common goal, is something that Microsoft knows well.
Both Microsoft and OSS technologies will continue to be around for years to come,
it's important that Microsoft work toward both these goals simultaneously. As such,
the central objectives of the Linux/Open Source Software Lab re�ect that larger goal.

3 A Piece of Fiber and a Hole in the Wall

Of course, there are different ways one could gain this kind of knowledge aboutopen
source software. It might be easier to rely on third-party interpretive data, but in many
ways that approach would be a lot like trying to understand a foreign country without
ever spending much time there. Buying Berlitz language CDs or a tourist travel guides
might make you feel like you're a part of the culture when you visit, but you'll remain
a tourist unless you actually live there for awhile.
Microsoft has embraced this philosophy in building the open source lab. Rather

than function as a third-party that's trying to look in from the outside and understand
open source, the company wants instead to be deep in this space and have experts
who can provide fact-based, unbiased scienti�c information. It has directed the lab
to �nd the science that proves statements made about Linux, so that the company
doesn't philosophize or guess what's going on from the outside. By being a center of
competency around open source software for the rest of Microsoft, we at the lab can
provide hard data and conclusions from open source experts to Microsoft product
teams when they ask questions such as, �What's the state of management tools in
Linux?� or �What's the state of the Linux desktop?�
When Microsoft hired me in 2003 to build the Linux/Open Source Software Lab

3

Bill Hilf

and lead a team of Linux and Unix researchers so that the company could better
understand open source software, I had no idea how literal they were about my
�building the lab.�
Because the IT department at Microsoft runs all-Microsoft software, I was charged

with building the lab so that it would re�ect a true Linux/OSS environment. What
that meant was the company had an existing room for the lab, and that was all. During
the �rst days on the job, I stood in a very empty and cavernous room while some IT
guys on the �oor overhead threaded a network cable through a freshly poked hole in
the ceiling. I was still standing there, staring at the piece of �ber in my hand, when
the IT guys came downstairs and said, �That's it, that's all we can give you. You're
kind of on your own from here.� Except for the walls, ceiling and that little piece of
cable, we literally had to build the lab from the ground up.
The �rst phase, of course, was to hire the staff, the most important asset the lab

would have. We now have a mix of fulltime employees and contractors, all of whom
have been expert developers or systems administrators in the open source community.
Some of the team members, such as Daniel Robbins, the founder of Gentoo Linux

who joined us earlier this year, have been chief architects or leads of Linux distributions.
Others have deepUnix expertise and are authors of popularUnix books or tools. Some
are Linux/OSS security experts, embedded developers, virtualization and clustering
experts, or developers with strong backgrounds in GTK+, GNOME/KDE, and
Localization. Additionally, we have members of the team familiar with running
Microsoft products in large data center environments, such as MSN. The breadth
of the expertise on the team is what's most impressive, and nearly all of them have
experience working in large, highly mixed IT environments.
The second phase involved building out the lab. In less than two years, we put

together a wide array of different technologies that use an enormous variety of
hardware, software and applications. With more than 300 servers from vendors as
wide-ranging as Dell, Hewlett-Packard, IBM, Microtel, Penquin, Pogo, and Sun, and
more than 20 versions of Unix and 48 versions of Linux, which include lesser known
distributions like Asianux, CentOS and NetBSD, the Linux/Open Source lab has to
be one of the most unique research facilities devoted to open source discovery.
Because we run dozens of different versions of everything, we have the opportunity

to test open-source interoperability capability in a multitude of scenarios. And because
everything we do in the lab we do on our own, from running our own network and
security services to doing our own patching and updating, our environment mimics
real customers' environments. I frequently tell the Microsoft product teams that if
their product makes it through this lab, it probably will survive 90 percent of the
Linux/Unix/OSS oriented customer environments out there.

4

A Look Inside Microsoft's Linux/Open Source Software Lab

Operating
System

Version/Distribution

Windows Windows 2000 Server, Windows Server 2003 Enterprise,
Windows Vista, Windows XP

Linux Arch Linux, Ark Linux, Asianux, Crux Linux, Debian,
Fedora Core, Foresight Linux, Freedows, Linux From Scratch,
Gentoo, Libranet, Mandrake Linux, Mandriva, MEPIS,
Novell Open Enterprise Server, Red Hat Enterprise Linux,
Red Hat Linux, Rocks, Slackware, SuSE Linux Enterprise Server,
SuSE Linux Standard Server, SuSE Pro, Tinysofa, TurboLinux,
Vector Linux, Vida Linux, Ubuntu

Unix AIX5L, FreeBSD, OpenBSD, NetBSD, Solaris,
Java Desktop System

Others MacOS

Table 1: Installed operating systems at the Open-Source-Software-Lab

Vendor Hardware

Compaq Proliant DL580, Proliant BL10e, nx5000

Dell PowerEdge 2450, PowerEdge 4350, PowerEdge 1855,
PowerEdge 1500SC, Optiplex GX280, Optiplex GX270,
PowerEdge 1855, PowerVault 745N

HP Proliant DL380, Proliant DL585

HP Compaq nx5000, D530

IBM xSeries x342, xSeries x340, xSeries x330, xSeries x350,
pSeries 630

Microtel Computer System SYSMAR715

Neoware CA5

Pogo PW 1464, PW 1180, Vorticon64

Sun SunFire V240, SunFire V20Z, SunFire 280R

Toshiba Tecra M2, Protégé

Table 2: Hardware used at the Open-Source-Software-Lab (without customized products)

5

Bill Hilf

4 An Open Source Bubble Swimming in a Sea of Microsoft

One of the more interesting and unexpected dynamics at the lab is that this very large
Linux and Unix shop is surrounded by the world's largest all-Microsoft environment,
which supports all of Microsoft's employees. This includes the company's Windows�
based security services, Internet proxies, mail services, human resource services, and
all the other systems that run the company.
So we've had to �gure out ways that we can interoperate, not just within the lab, with

its incredibly complex environment, and not just with some aspect of the Microsoft
environment, such as Exchange or Active Directory, but between the lab and the rest
of Microsoft.
So many customers running mixed environments have asked how we manage

Linux, UNIX and other open source software (OSS) inside such a Microsoft-centric
IT environment. �How do you get these things to work together? How do you do
deployment of software? What kind of tools do you use?�
The breadth of management tools we use parallels the number of servers, operating

systems and other applications we have running in the lab. For software management
and distribution, we use tools like Microsoft Systems Management Server with Vin-
tela Management Extensions (VMX), Kickstart, Red Carpet, Portage and Red Hat

Network. To remotely manage the lab infrastructure, we use SSH, VNC, X-Windows

Tunneling and Windows Terminal Services. Again, it is unlikely any single customer
would use all of these tools. But we try to mimic a variety of scenarios that a multitude
of customers might be using so that we can deeply understand and hopefully play a
role in remedying the issues that are out there.
Having all of these different Linux-oriented workloads, servers, desktops, laptops,

software and device con�gurations inside such a huge Microsoft environment has
allowed us to experiment with and test interoperability on a daily basis. In the process,
we're learning some very interesting things. Some of them are simple issues, like how
to get on the Internet running Linux in a Windows environment, and others are more
complex, like how to authenticate against Active Directory from Linux clients or how
to run OSS mail clients withMicrosoft Exchange Server, and so on.

5 Building and Testing Interoperability at the Lab

One of the more interesting areas of discovery that came about while testing inter-
operability in the management tools we use, focused on extendingMicrosoft Systems

Management Server (SMS) so that it can be used to manage Unix, Linux and even Ap-
ple systems. SMS was built so that it can use an open protocol calledOpenWBEM to
communicate with other pieces of software, such as VMX, that run on non-Microsoft
systems. By extending SMS using VMX in the lab, we're able to use the SMS frame-

work to manage all of our servers and clients. This type of setup provides those in

6

A Look Inside Microsoft's Linux/Open Source Software Lab

Figure 1: SMS-Interface to manage the Linux server at the Microsoft-Open-Source-Lab

the lab used to working with Windows a familiar tool for managing non-Windows
systems, while at the same time providing our Linux and Unix researchers with the
management tools they're familiar with, such as SSH clients, X-Windows and Red

Hat Con�g tools. Figure 1 is a picture of the SMS interface for managing our Linux
servers in the lab.
Another valuable lesson we've learned about using commercial third-party software

to extend Microsoft products involved using Centrify DirectControl solution to inte-
grate our Unix and Linux platforms withMicrosoft Active Directory's identity, access
and policy management services.
Before we started using DirectControl, if one of us wanted to log in to any of

our servers, we'd have to authenticate a username and password for each of those
servers�a daunting task when you have over 300 servers with a large mix of operating
systems in your environment. But by setting up an Active Directory domain so that
each of us has one domain username and password, we can access any type and number
of servers to which we are authenticated after logging on once to that domain. This
gives us a really powerful single authentication solution. Being able to authenticate
from a Linux server to an Active Directory server is something that many people are
not aware of�I've given presentations to CIOs who were unaware of these types of
solutions.
The Linux/Open Source Lab also played a role in helping Microsoft's test support

for Linux intoMicrosoft Virtual Server 2005 SP1, which can virtualize both Linux and
Sun Solaris operating systems on servers running Windows. We tested this support

7

Bill Hilf

extensively using Virtual Server 2005 on a single machine to run all 48 of our Linux
distributions as guest operating systems. This setup allowed us to test drive different
Linux distributions and have all sorts of different servers running on a Microsoft
operating system without having to use separate servers for each Linux machine.

6 Helping Unix/Linux Pros Speak a Familiar Language Using
Windows

Having product interoperability is important, but a larger issue that many Unix and
Linux professionals have with Windows is familiarity.
As a long time Unix professional, one of the biggest hurdles for me in a Windows

data center was the lack of crossover between my language, which comprised my
Unix skills and knowledge, and the language of the Windows platform. There are a
variety of ways to approach this incongruity, such as using the Subsystem for Unix
Applications in R2 or by using a third-party product like CygWin, or even using a
virtualization product. But many of these are migration tools that really are more like
stepping stones for moving an application from one platform to another. What I
really needed was an integrated, technology that was part of Windows that could help
me, a long-time Unix professional, speak a familiar language on a Windows server.
Creating this type of technology is precisely what one of our Windows Server

management product teams is currently doing. Called Monad, it is an extraordinarily
powerful next-generation command line and shell environment forWindows that runs
on .NET. Microsoft's vision for Monad is to enable simple automation for local and
remote administration by delivering a consistent, fast, comprehensive and composable
command line scripting environment that spans the Windows platform. For a Unix
pro, the ability to compose my command line and scripting environment in a way that
looks and behaves similar to what I've learned in a Unix/Linux world, gives me much
more control over my Windows environment and signi�cantly reduces the barrier
between moving between Unix and Windows.
One of the things the Linux/Open Source Lab is doing with Monad involves

writing plug-ins using a popular open source tool called VIM (VI Improved) to call
onMonad. One of our researchers used VIM, which edits text �les and code, to write
a plug-in that calls on Monad to digitally sign a script when the script is ready to be
deployed. The advantage of using a plug-in like this is that it allows VIM users (a
large population in the Linux/Unix world) the ability to extend their favorite tool into
monad while simultaneously adding value to Monad. We use Monad extensively in
the lab to for administration tasks and we are looking at a variety of other scenarios
similar to using this VIM plug-in that can help the Unix/Linux user community feel
at home in the next generation Windows command line and scripting environment.

8

A Look Inside Microsoft's Linux/Open Source Software Lab

411
1 123

3 971
4 642

5 153

Red Hat 7
(2.2.24)
9/2000

Red Hat 9
(2.4.20)
3/2003

SuSE 7.1
(2.2.19)
10/2001

SuSE 8.2
(2.4.20)
4/2003

SuSE 9.2
(2.6.8)

10/2004

Figure 2: Number of �le changes between the original Linux Kernel (from kernel.org) and the same
version of that kernel provided by the corresponding Linux distribution

7 Using Science to Test Perceptions

We also hear from customers a variety of broad assumptions around Linux, Open
Source andWindows. We use our lab to analyze these perceptions and rely on science,
versus ideology or belief, to test these perceptions.
For example, a common perception about Linux is that it will run on just about

any piece of hardware, so we decided to test legacy hardware support for Linux to see
if that perception was true.
We tested eight current Linux distributions, including SuSE Pro 9.2, Xandros and

Fedora Core 3, along with Windows XP and Windows Server 2003, by attempting to
install each of them on computers representative of the average computer available in
1995, 1997, 1999 and 2001. This was not a �Can you modify the operating system?�
test; it was simply an out-of-the-box installation from a CD-ROM. If we were able to
successfully install the operating systems, we then looked at their performance. What
we found was that there were not many cases in which a modern Linux distribution
could run on PCs that were older than what Windows could run on as well. So in this
example, we were able to use science to disprove a common perception.
We also track other open source software dynamics, such as how different the

commercial and non-commercial distributions of Linux are from their original open
source projects. The chart in 2 illustrates some of these differences�the number of
�les changes between the original open source Linux kernel (from kernel.org) and
the same version of that kernel as shipped by a commercial Linux distribution. This
allows us to better understand the �community versus commercial� dynamics at work
in the open source model.
In addition, we attempt to quantify the ecosystems so that we can understand the

9

Bill Hilf

real numbers underneath the market trends. For example, last August we counted
the number of supported PCs and servers for Red Hat and Novell SuSE operating
system products and compared those against our own supported hardware numbers.
We looked at certi�ed systems for three versions of Red Hat Enterprise Linux:

versions 2.1, 3 and 4, and found that these versions supported 241, 745, and 173 server
systems respectively (http://bugzilla.redhat.com/hwcert/). SuSE Linux Enterprise

Server version 8 had 490 certi�ed systems and version 9 had 537 (http://developer.
novell.com/yessearch/Search.jsp). On the desktop Red Hat Desktop supported
360 systems while Novell Linux Desktop 9 supported 165. These numbers stand in
stark contrast to the number of certi�ed systems for Microsoft Windows Server 2003,
which is more than 5,000 and for Windows XP, which is over 85,600.
This type of analysis helps us understand the real size and growth of the current

market-leading Linux distributions and how Windows compares. It also gives us an
indication of what type of systems customers might be using to deploy with, which in
turn helps us to understand the con�gurations of our lab.

8 Diving Deep Into the Sociological Aspect of Open Source

One of the most signi�cant areas of open source software that the lab looks closely at
is the phenomenon of community development, and it is one of the key characteristics
that Microsoft is learning from the open source community.
We spend about 20 percent of our time learning about this process and helping

Microsoft developers and testers also learn how they can be more aware of and ensure
Microsoft products are more accessible to the development community. As engineers
and technologists, they are fascinated by this model�they want to understand how
testing actually happens in this collaborative community; what tools are used; how test
cases are written; how bugs are �led, tracked and regressed; and what type of training
testers have had. We approach the community model objectively, analyzing the good
and the bad aspects of it, separating fact from �ction, so that we fully understand
the engineering pros and cons of community development without the surrounding
philosophy and hype.
The community development model has helped Microsoft �nd new ways to think

about its own development projects, such asMicrosoft Shared Source, and how it can
take better advantage of the community process.1 Educators from our lab work with
the product teams to ensure they've thought through all the elements of what it's like
to use this process and what types of issues are likely to surface. And just being able
to engage with the open source community about how it develops software has also
helped Microsoft mature its thinking around how to participate with developers who
are building software using different development models.

1 Information about Microsoft Shared Source are available at http://www.microsoft.com/sharedsource

10

http://bugzilla.redhat.com/hwcert/
http://developer.novell.com/yessearch/Search.jsp
http://developer.novell.com/yessearch/Search.jsp
http://www.microsoft.com/sharedsource

A Look Inside Microsoft's Linux/Open Source Software Lab

In turn, the lab over the past two years has become a kind of gateway for open
source developers at the engineering level who need to communicate with Microsoft.
For example, when they're working on an interoperability issue with a Microsoft
product and have questions, they increasingly are contacting us. Here they �nd
other developers and researchers who understand the open source community, their
language and their issues. This has to be a positive development�for too long
Microsoft and the open source community have been regarded as separate realities.
Just the idea that there might be some bridge-building happening on this level is very
encouraging, so we're progressing in this realm with real results.

9 Looking Forward: The Future of Open Source

Another aspect of research we're pursuing at the Linux/Open Source Software Lab
is the historical trending of open source software. We've done deep analysis of the
last major versions of the Linux kernel in an attempt to answer a number of questions
about its evolution. Is the code getting simpler or increasingly more complex? Does
it have more or fewer defects every year? Is it growing larger or getting smaller? Is
it becoming more or less ef�cient? Through all this research, we've identi�ed three
common trends.
First, if you focus only on the software characteristics and the code, open source

software appears to be growing fairly linearly. So every year the lines of code increase,
complexity grows as a result, and, of course, with complexity comes more defects.
This isn't surprising, nor is it a knock against open source software�this is how
all software, commercial or non-commercial, has evolved. This growth is not to
be confused with the modularity of open source software. Many people mistakenly
believe that if something is modular, it doesn't grow and is always simple to maintain.
This is not the case�even with modular software there's still growth.
What may be unique to open source software, however, is whether the community

development model will be able to continue to adequately respond to this increasing
complexity. Can this loosely coupled model, in which developers work on and
distribute Linux in different areas around the world with very loosely de�ned authority,
planning, testing, or structure, sustain the growth of the software? Or is it possible
that because of the way the community development model works, the software could
plateau rather than continue to grow and get more complex?
Again, this is a software engineering research question�we are not looking for a

positive or negative answer. This is something we're watching closely and something
we are investigating in other open source applications beyond the kernel.
The second trend we're seeing is the growth of commercial and professional open

source software companies. Over time, we have tracked the developer contributions
for various OSS, identifying who is working on the code. By looking at research
in the repositories, academic research in this area, and our communication with the

11

Bill Hilf

community, the pattern has been clear: Over the past �ve years or so, more and
more contributions are coming from developers employed by a commercial entity
that either directly makes money from the OSS project (such as MySQL or JBoss) or
indirectly through hardware, commercial software and services (IBM, Novell, HP).
To those in the OSS developer community, it's not a huge surprise, but to those in
the broader market who might still believe that people are working on Linux or other
OSS projects �in their free time,� it is often a surprise.
The third trendwe are seeing is amarket realization of theOSSmodel overall�what

the essence of the phenomenon really is. In surveying and analyzing the large amount
of open source software available, a large amount of these projects are system software
that has been developed for other developers or system administrators. So I think it's
fair to say that in the larger, historical perspective, open source software has largely
been a developer phenomenon. And therein lies an essential difference between how
commercial software companies build software and how open source works today:
Commercial software companies design and engineer software to serve a customer
need, whereas open source software is largely designed by and for developers and
technical users.
In some domains this phenomenon is quite powerful and has enabled rapid growth

in various areas. Of course, there are some exceptions, but this differentiator that is
becomingmore apparent inmodern thinking around open source software. Moreover,
it shows that a variety of development models can and will coexist in the software
ecosystem�indeed, we have found that many popular OSS server applications have
a large and growing business on Windows (such as JBoss and MySQL).

10 Adding Value by Providing a Balanced View of OSS Trends

By exploring the dynamics of the open source software phenomenon in an impartial
and unbiased manner that relies on hard technical data, the Linux/Open Source
Software Lab at Microsoft has been able to drive improvements and changes to both
internal Microsoft groups and customers who have asked us to look into common
Linux/OSS questions and issues. And while we're very proud of the work we've
accomplished so far, by continuing to practice the �ne balance between cooperation
and competition with open source software, we are equally con�dent that our future
research will bene�t Microsoft, its customers and partners, and the open source
community. It is an exciting time indeed!

12

