
This article has originally been
published in German as part of the

GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA Everyone is per-
mitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation‘s software and to any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make
restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the soft-
ware, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2)
offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author‘s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modifi ed by someone else and passed on, we want its recipients to know that what they have is not the origi-
nal, so that any problems introduced by others will not refl ect on the original authors‘ reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone‘s free use or not licensed at all. The precise terms and conditions for copying, distribution and modifi cation follow. TERMS AND CONDITIONS FOR COPYING, DISTRI-
BUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this
General Public License. The „Program“, below, refers to any such program or work, and a „work based on the Program“ means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or with modifi cations and/or translated into another language. (Hereinafter, translation is included without
limitation in the term „modifi cation“.) Each licensee is addressed as „you“. Activities other than copying, distribution and modifi cation are not covered by this License; they are outside its
scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program‘s source cod e as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of trans-
ferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifi cations or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) You must cause the
modifi ed fi les to carry prominent notices stating that you changed the fi les and the date of any change. b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. c) If the modifi ed program normally
reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appro-
priate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required
to print an announcement.) These requirements apply to the modifi ed work as a whole. If identifi able sections of that work are not derived from the Program, and can be reasonably consi-
dered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute
the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the
Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may
copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following: a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sectio ns 1 and 2 above on a medium customarily
used for software interchange; or, b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing
source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or, c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form
of the work for making modifi cations to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface defi nition fi les,
plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distri-
buted (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accom-
panies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from
the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense,
or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically termi-
nate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its deriva-
tive works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. 6. Each time you redistribute the Program (or

Open Source
Jahrbuch 2007

Bernd Lutterbeck
Matthias Bärwolff
Robert A. Gehring (Hrsg.)

Zwischen freier Software und Gesellschaftsmodell

O
pen Source Jahrbuch 2007

available at www.opensourcejahrbuch.de.

TheOpen Source Jahrbuch 2007 is an extensive compendium dealing
with the various aspects of open source software and beyond.
Whilst most articles have been written in German, this is one
of the articles that have originally been written in English and
subsequently been translated into German. Refer to our website
for more English articles.

www.opensourcejahrbuch.de

The Economics of Software Markets

HAL VARIAN AND CARL SHAPIRO

(CC-Licence 2.5, see
http://creativecommons.org)

IT markets and software markets in particular are characterized by a number
of features that render them unique in comparison to other more traditional
product markets. Those features�namely complementarity of subsystems,
signi�cant transaction costs due to lock-in and network effects, incomplete con-
tracts over future commitments by the vendor, and the trade-off between
�exibility and costs�impact heavily on consumer and producer choices in
a highly dynamic market context. We believe that it is of vital importance
to settle for open standards, for they maximize both competition and choice
within the market.

Keywords: Network economy · Switching cost · Open standards

1 Introduction

The presence of strong network effects in platform markets, and the interrelationship
between the platform and applications markets, make software a particularly compli-
cated industry. Many of the economic effects that shape the industry's development
lie closer to the cutting edge of modern economic thinking than to the basic theories
taught in freshman courses. See our book, �Information Rules: A Strategic Guide to
the Network Economy� (Shapiro & Varian 1999), for a more complete discussion.
A number of these issues are particularly important: the complementarity among

the components of an information system, the use of switching costs to lock in
consumers and to guarantee revenue streams, the use of commitment as a negotiating
tactic, the basic de�nition of network effects, the use of licensing terms to facilitate
different business models, and the practice of bundling or integrating to increase
revenues and alter market structures. The openness of source code can affect a
number of these issues. While a review of these important aspects of network

http://creativecommons.org

Hal Varian and Carl Shapiro

Economic Effect De�nition Implication

Complementarity The value of an operating sys-
tem depends on availability of
applications.

Consider the entire system of
needs before making choice.

Switching costs The cost of switching any one
component of an IT system
can be very high.

Make choices that preserve
your �exibility in the future.

Commitment Vendors may promise �exibil-
ity or low prices in the future
but not deliver.

Look for �rm commitments
from vendors, such as a com-
mitment to open interfaces

Network effects The value of an application or
operating system may depend
heavily on how many other
users adopt it.

For a closed network of users,
standardization within the net-
work is more important than
choosing an industry standard.

Licensing terms A perpetual license involves a
one-time payment; a subscrip-
tion involves a yearly payment.

Licenses can be particularly
pernicious when switching
costs are high.

Bundling Vendors will want to sell soft-
ware in bundles tomake future
entry into the market dif�cult.

Purchasing a bundle now may
reduce your future costs, but
will also limit your �exibility
and choices.

Table 1: Summary of Economic Effects and Their Implications

economics is beyond the scope of this paper, table 1 summarizes some of the key
economic effects shaping software markets.
Policymakers need to appreciate that the decision to open source code is but part

of a broader debate raging through the computer and software industries. Some in the
industry have adopted the phrase open computing to describe an approach, applying
to both hardware and software, that emphasizes modularity, interoperability, intercon-
nectivity, and system �exibility. The key to open computing lies in open standards,
including plug interfaces in hardware and application programming interfaces (APIs)
in software. Important open source projects, such as Linux, embody all of these
desiderata. Systems built around Linux are thus much better suited to the ideals of
open computing than are systems built around platforms whose APIs are maintained
as proprietary secrets. Many of the bene�ts that we attribute to open source software
can be leveraged to even greater advantage when entire computing systems are open.
This is particularly true in considering the economics of openness. Because hard-

ware and software, servers and desktops, platforms and applications, are all parts of a

2

The Economics of Software Markets

single computing environment, the economics of network effects ripple through the
entire world of computing and software. For this reason, the effect of openness on
industrial development are profound. Open standards and interoperability, in partic-
ular, tend to shift industrial focus from competition for the standard to competition
within the standard. Immature industries may need time to experiment with different
approaches before deciding upon a standard. Once competitors who began in differ-
ent places converge, however, a standard exists-whether or not it has been �of�cially�
recognized as such. If that standard remains the property of a single company, little
competition may prevail. If, on the other hand, it is open to all industry participants,
competition often remains �erce. Consumers and entrepreneurs tend to win, and re-
wards continue to �ow to current innovators, rather than to those whose innovations
proved successful during an earlier stage of industrial development.

2 Primer on Economics Concepts in the Software Sector

A decision-maker contemplating the adoption of a particular hardware or software
platformmust consider the entire information system. Hardware, software, personnel,
training, system administration, and other components are all relevant to the adoption
decision; looking at any one piece in isolation can be highly misleading. As a result,
decisions about software adoption are more complicated than many other purchase
decisions. Software adoption not only in�uences decisions about hardware, training,
and personnel, but also implicates concepts related to �lifecycle costing� and �network
economics.� Different models of software development, and differing degrees of
access to source code, can change many of the calculations that should go into a
thoughtful software adoption decision.

2.1 Switching Costs and Lock-In

Complementarity implies that the components of an information system are interde-
pendent. Any decision to change a single component is likely to require changing
others, as well. New hardware may require a new operating system. A new operating
system may motivate new applications. New applications may require retraining. And
new server software may necessitate updated desktop application software. These
cascading changes impose �switching costs.� When switching costs are large, users
may be locked in to their current information system, or at least some components of
it.
Huge switching costs and user lock-in both arise quite often in the world of

information systems. Indeed, in many cases, the total cost to an organization of
switching information systems vastly exceeds the purchase price of the hardware and
software. When the costs of switching to an alternative system are large, and when
the user must rely on a single vendor to provide components of the incumbent system
(such as software or hardware upgrades), users may be locked in to a single incumbent

3

Hal Varian and Carl Shapiro

vendor, and thus vulnerable to that vendor's whims-and more importantly, to its
policies concerning service, support, licensing, and pricing.
Many information technology vendors rely on switching costs as an important part

of their business models. Once a user has chosen a particular database vendor or an
operating system, it may be very costly to change. This switching cost puts them at
the mercy of the vendor. Savvy buyers should look not only at the deal that is offered
up front, but also over the whole life cycle of the product. If the costs of switching to
an alternative in the future will be very large, the locked-in consumer will possess little
bargaining power. Consumers should always expect prices to increase for any future
information technology services not included in their initial purchase contracts.
Decisions about information system adoption thus require consumers to look ahead

and reason back. Focusing only on the current situation can be quitemisleading. Because
information systems are long-term investments that can lock consumers into vendors
for many years, up-front decisions that maximize future �exibility convey true value
to consumers.

2.2 Commitment

There is a fundamental tension between buyers and sellers when switching costs are
large: buyers want to maintain �exibility while sellers want to encourage lock-in.
Vendors recognize the reluctance of buyers to lock themselves in to proprietary
solutions and thus try to downplay the extent of the lock-in.
Open source alters the dynamics of these negotiations. It offers a way for sellers

to commit not to exploit buyers after they have chosen an information system envi-
ronment. If the source code for a software system is available, then users, perhaps
aided by third parties, have the �exibility to maintain and to extend their own soft-
ware investments. This ability allows users to adopt open source solutions with some
degree of assurance that their switching costs will be relatively low. If they become
unhappy with their current vendors, they can switch to others and have considerable
control over their own switching costs. In short, low switching costs facilitate com-
petition, thereby forcing vendors to stay on their toes and to provide good service
after the initial sale is made. Customized software vendors have long used �source
code escrow� to assure customers that they would not be stranded if the company
went out of business. Open source is a much stronger assurance. It limits the extent
of opportunistic behavior in the future and tends to produce a more competitive
environment for vendors.
This effect, though, stems from an openness broader than simply open source

code. Some parts of the industry use the phrase open computing to describe an
approach, applying to both hardware and software, that emphasizes modularity, inter-
operability, interconnectivity, and system �exibility. The key to open computing lies in
open standards, including plug interfaces in hardware and application programming
interfaces (APIs) in software. Important open source projects, such as Linux, embody

4

The Economics of Software Markets

all of these desiderata; systems built around Linux are thus much easier to maintain
as completely open computing systems than are those built around platforms with
proprietary, closely-held interfaces. Many of the bene�ts that we attribute to open
source software can be leveraged to even greater advantage when entire computing
systems are open.

2.3 Network Effects and Positive Feedback

When the value of a product or service depends on how many other people adopt
that product or service, economists say that there is a network effect. For example, the
value of a fax machine depends on how many other fax machines there are. Similarly
the value of an email account may depend on how many of your correspondents use
email.
In some cases, the value of a product may depend on how popular some other

product is. A DVD player, for example, becomes more valuable as more DVD disks
become available to play on it. When networks effects operate through complements
in this fashion, they are known as indirect network effects.
Computer software exhibits strong indirect network effects, since the value of an

operating system depends, to some degree, on how many applications run on it.
Similarly, the value of an application is enhanced if it runs on a popular operating
system.
Such indirect network effects may be less important for a dedicated server�often

what really matters is only whether a particular program, such as a Web server or
database, runs on the server. Similarly, most users don't care what operating system
is used in their cash register. But in other cases, a user might not know exactly
what applications he or she wants when purchasing an operating system. In those
cases, the system with the most available applications is attractive because it preserves
options for the future; popular applications will be available, �le exchanges will be easy,
employees, customers, partners, or friends are likely to be familiar with the system, and
so on. This inherent attractiveness born of sheer popularity means that the dominant
operating system and dominant applications providers tend to have a large advantage
compared to alternative providers, even when those alternatives are of similar quality.

2.4 Bundling

Software applications are often sold bundled together. Microsoft Windows itself
consists of a large number of programs that work together;Microsoft Of�ce involves
several different productivity tools that interoperate. Red Hat Linux, a standard Linux
distribution, involves hundreds of programs that all interoperate.
Bundling is an attractive policy for both vendors and buyers, though a speci�c

bundle may serve the interests of only one party. Buyers may welcome a bundle
because they can get a complete integrated package with some assurance that all the

5

Hal Varian and Carl Shapiro

applications work together and that they will be able to satisfy their future needs with
this one package. Sellers may offer bundles since bundles allow them to better meet
buyers' needs and perhaps to extend sales from one software category to another.
Someone may initially buyMicrosoft Of�ce because she wantsMicrosoft Word. Later
on, when she needs spreadsheet capability, she will naturally turn to Excel, which she
already owns, rather that considering or purchasing competitive spreadsheet offerings.
When these effects are strong, it may be extremely dif�cult for standalone vendors of
individual software components, such as spreadsheets, to compete.
If there are switching costs associated with each component of the bundle, the cost

of switching bundles will have to be summed across the various components. Even
when each individual component has a manageable switching cost, the total summed
across bundles may be substantial, leading to lock-in. Also, bundling may discourage
users from switching one component at a time as a migration strategy.

References

Shapiro, C. & Varian, H. (1999), Information Rules: A Strategic Guide to the Network Economy,
Harvard Business School Press, Boston.

6

