This article has originally been
published in German as part of the

Bernd Lutterbeck
Matthias Barwolff
Robert A. Gehring (Hrsg,)

Open Source
Jahrbuch 2007

Zwischen freier Software und Gesellschaftsmodell

available at www.opensourcejahrbuch.de.

The Open Source Jahrbuch 2007 is an extensive compendium dealing
with the various aspects of open source software and beyond.
Whilst most articles have been written in German, this is one
of the articles that have originally been written in English and
subsequently been translated into German. Refer to our website
for more English articles.

www.opensourcejahrbuch.de

The Emerging Economic Paradigm of Open Source

BRUCE PERENS

®O

(CC-Licence 2.5, see
http:/ [creativecommons.org)

Open Source developers have, perhaps without conscious intent, created a
new and surprisingly successful economic paradigm for the production of
software. Examining that paradigm can answer a number of important ques-
tions. It’s not immediately obvious how Open Source works economically.
Probably the worst consequence of this lack of understanding is that many
people don’t understand how Open Source could be economically sustainable,
and some may even feel that its potential negative effect upon the proprietary
software industry is an overall economic detriment. Fortunately, if you look
more deeply into the economic function of software in general, it’s easy to
establish that Open Source is both sustainable and of tremendous benefit
to the overall economy. Open Source can be explained entirely within the
context of conventional open-market economics. Indeed, it turns out that it
has much stronger ties to the phenomenon of capitalism than you may have
appreciated.

Keywords: Cost-effectiveness - Product differentiation - Economic paradigms
of software development

1 A Strong Economic Foundation

In the early days of Open Source!, its proponents did not fully understand its eco-
nomics. Through our lack of understanding, we created the perception that Open

1 For the purposes of this paper, Open Source and Free Sofware mean the same thing. There are philosophical
differences between the two groups, but the great majority of software to which the definition of Open
Source applies would also fit the Free Software Foundation’s definition of Free Software.

It is important to note that when I created the document that later became the Open Source
Definition, as a policy document for the Debian project, the 14S1* had not created its own definition of
Free Software. At that time, Richard Stallman commented in personal email that my document was a
good definition of Free Software.

http://creativecommons.org

Bruce Perens

Source’s economic foundation was intangible. This led many people to feel that Open
Source would not be sustainable over the long term and would be incapable of scaling
to meet the market’s need for new technology. It’s important to correct that percep-
tion now. In “The Cathedral and the Bazaar,”> Eric Raymond (1999) attempted to
explain Open Source as a gift economy, a phenomenon of computer programmers
having the leisure to do creative work not connected to their employment, and an
artistic motivation to have their work appreciated. Raymond explains excellently how
programmers behave within their own private subculture. The motivations he ex-
plored dominated during the genesis of Open Source and continue to be effective
within a critically important group of Open Source contributors today.

Raymond did not attempt to explain why big companies like IBM are participating in
Open Source, that had not yet started when he wrote. Open Source was just starting to
attract serious attention from business, and had not yet become a significant economic
phenomenon. Thus, “The Cathedral and the Bazaar” is not informed by the insight
into Open Source’s economics that is available today.

Unfortunately, many people have mistaken Raymond’s early arguments as evidence
of a weak economic foundation for Open Source. In Raymond’s model, work is
rewarded with an intangible return rather than a monetary one. Fortunately, it’s
easy to establish today that there is a strong monetary return for many Open Source
developers. But that return is still not as direct as in proprietary software development.
Thus, I’ll ask you to follow a few more steps than you would in understanding the
economics of proprietary software.

2 How Are You Going To Be The Next Microsoft?

Prospective software entrepreneuts are often asked: how are you going to be the Next
Microsoft? And those who base a business upon Open Source are asked: how are you
going to be the next Microsoft with Free software? But this isn’t the right question if
our goal is to achieve an improvement over the Microsoft model. It reflects the fact
that most people have been thinking about software from an extremely vendor-centric
viewpoint.

Whether or not we will admit it, most of us are very impressed with Microsoft’s
wealth and arrogance, and when we think of producing software, we automatically
think of Microsoft and the way they do it. But it turns out that the Microsoft model
accounts for only a minority of the software that is made and used in business today.

Stallman would not agree with my suggestion that a business might be better off not assigning a
Free Software license to software if that license would reduce the differentiating value of the software
to that business. Thus I am using the nomenclature Open Source in order to avoid diverting Stallman’s
agenda for Free Software.
2 Raymond followed “The Cathedral and the Bazaar” with two additional papers, “Homesteading the
Noosphere” (1998) and “The Magic Cauldron” (1999), which continue his discussion of the economics
of Open Source. They can be found at http://www.catb.org/~est/writings/.

http://www.catb.org/~esr/writings/

The Emetging Economic Paradigm of Open Source

Around 30 % of the software that is written is sold as software.” Most software is not
sold at all. It is developed directly for its customer, by the customer’s own employees
or by consultants who bill for the service of software creation rather than for the end
product. It’s important to look at why that is the case, in order to understand the
economics of Open Source.

3 Indication of an Unfulfilled Need

In February 1998, Eric Raymond and I formed the Open Source Initiative. We were
standing on the shoulders of a giant: Richard Stallman’s Free Software campaign had
existed since 1983% and created much of what people call Open Source today. The
combination of the Linux operating system kernel and Stallman’s GNU System was
becoming viable for business use. But the way that Stallman chose to present Free
Software depends upon the a priori acceptance of the virtue of certain freedoms.
Stallman is a programmer, and chose a philosophical presentation that appealed to
programmers.

In contrast, business people are pragmatists and are more impressed by economic
benefit. Because Stallman’s presentation limited his audience, his campaign had not
been able to achieve the economic serendipity that is visible today.> Raymond and I
chose to approach business people in a more pragmatic fashion, with the expectation

3 Inareport by the US. Office of Technology and Electronic Commerce (2003) on the size of the U.S.
software market, “Packaged Software” represents 24.6 % of the industry. All other industry sectors
that represent computer programming, including all of Computer Programming Services, Computer
Integrated Systems Design, Computer Processing and Data Preparation and Processing, Information
Retrieval Services, Computer Facilities Management Services, and some sub-categories of Software
Publishing represent the remainder.

However, that report does not account for the software produced solely for company-internal use
by programmers employed by companies that have a non-software product. I conservatively estimate
the population of internal programmers to be equal to that of contract ones, who are listed under
Computer Programming Services (19 % of market).

4 The GNU project was announced in September 1983 (see http://www.gnu.org/gnu/initial-announce
ment.html), although the project didn’t actually start until January 1984, and it was not until some-
time later that the Ircc Softwarc l'oundation was formed around it. See http://www.gnu.org/gnu/
gnu-history.html for an overview of the GNU project.

5 There was also the fact that the GNU project had developed and integrated a lot of software, but had
not been able to produce its own operating system kernel. This left the door open for Linus Torvalds
to do the last part of the project. Generally an operating system is referred to by the name of its kernel,
dispite the fact that it contains many components other than the kernel. This caused an injustice to
Stallman that persists today. Although Stallman did a great deal of the work that made Iinux possible,
Torvalds’ team of kernel contributors was not closely allied with Stallman, and announcements of Linux
were not attributed to FSF.

Linux is in truth only the kernel. The rest of what comes in a Linux distribution is what Stallman
intended to be the GNU System, and Stallman should be credited with its concept, with directly
developing the C compiler (surely as important as the kernel) and the Eimacs editor, and with inspiring
the development of much of the rest of the system.

http://www.gnu.org/gnu/initial-announcement.html
http://www.gnu.org/gnu/initial-announcement.html
http://www.gnu.org/gnu/gnu-history.html
http://www.gnu.org/gnu/gnu-history.html

Bruce Perens

that they would come to appreciate Stallman’s philosophy once they’d seen its concrete
benefits.®

The first time the public heard of Open Source was in an announcement that I
posted on Slashdot and a few mailing lists. It contained an introduction and the Open
Source Definition, both a manifesto of Open Source and a definition of acceptable
Open Source software licensing, which I'd created as a policy document of the Debian
project six months eatlier. Eric Raymond edited “The Cathedral and the Bazaar,” then
a year old, to replace the words Free Software with Open Source.

Some time after my announcement, a reporter asked Steve Ballmer, then president
of Microsoft, if Microsoft would “Open Source” their Windows product. Ballmer
was reported to have explained that Open Source wasn’t just source code, it was a
form of software licensing, The vice president of Microsoft had read my manifesto,
and the press was asking him about it.

Manifestos from then-unknowns like myself and Raymond don’t get that sort of
recognition, unless for some reason the world is waiting for them. I submit that
the reason was widespread dissatisfaction with the dominant economic paradigm of
software creation at the time: Microsoft and its products. Microsoft was widely
perceived as placing their own interests ahead of those of the customer. Their
software was known to contain a large number of un-rectified bugs, and their desktop
operating system was extremely crash-prone. They could get away with this because
they essentially had no viable competition on the desktop.

People were searching for an alternative. If we were going to make software
better, we’d have to find some other way to do it than what Microsoft was doing.
Open Source created new economic relationships. There was a new peer-to-peer
relationship between enterprise software customers, who were enabled to participate
directly in the development of the Open Source software and thus became software
developers for each other. There were new relationships between software vendors,
who collaborated on Open Source projects while they competed elsewhere. And
there were changes to the customer-vendor relationship: the customer could now
participate with the vendor in software development. Because many vendors could
access the same source code, and thus support the product, there was less lock-in and
less exclusivity to the customer-to-vendor relationship. As a result of these changes,
new suppliers arose, and existing suppliers began to substitute Open Source products
for proprietary software.

The public sharing of the creation, ownership, and benefits of software was the
antithesis of the Microsoft model. Open Source had already created a technically
successful operating system and the first practical web servers and clients, and thus

6 'To some extent, Raymond deprecated Stallman when speaking for Open Source, when he might simply
have promoted to the different audience of Open Source without any conflict with Stallman and his
Free Software campaign. In my opinion, this unfortunate outcome is attributable more to a difference
in personalities than philosophy.

The Emetging Economic Paradigm of Open Source

showed signs of being surprisingly effective. And so, the public buy-in to Open Source
started out strong, It was followed by tremendous economic growth, with the Linux
sub-sector alone showing an annual growth rate of 37 to 45 percent and predicted to
be a $ 35 Billion dollar market by 2008 (IDC Software Consulting 2004).

The unusual acceptance and startling financial figures argue that Open Source must
be the answer to some previously-unfulfilled need. Otherwise we would not have
seen such wild, seemingly absurd phenomena:

Linux, the hobby project of a student in his twenties, takes over enterprise computing,

IBM, the epitome of conservative business, de-emphasizes its billion-dollar AIX
operating system in favor of a product developed by a loose coalition of pro-
grammers with no financial motive in common, upon whom no corporate
directive can be binding, whose leader has no power but the respect of others.

Microsoft faces its first serious competitor in a decade: programmers who give away
their work.

These events seem absurd: they certainly don’t fit the common economic paradigm
of technology production. A new economic phenomenon is operating, and to explain
it we’ll have to look more deeply into the economics of software production.

4 Looking for Economic Impact

Since Microsoft is the dominant model of a software manufacturer in most people’s
minds, and we’re exploring the economics of software, let’s ask: What is the greatest
economic impact of Microsoft?

Is Microsoft’s greatest economic impact the wealth of Bill Gates? Of course not!
A lot of people envy his wealth, but Bill’s piece isn’t the whole pie. Is it the fact
that they have amassed 70 Billion dollars in the bank, are the worlds largest software
company, and employ 71000 people in 103 countries? No, not that either. Is the
greatest economic effect of Microsoft the fact that they have enabled a great many
businesses—their customers—to do business more efficiently, and to have businesses
that they could not operate at all without the software that enables them? Yes, that is
the biggest economic impact of Microsoft. Microsoft is a tool-maker, and the effect
of the tool-maker on the economy is tiny next to the economic effect of all of the
people who are enabled by the maker’s tools. The secondary economic effect caused
by all of the people and businesses who use an enabling technology is greater than the
primary economic effect of the dollars paid for that technology. And of course the
same is true for Open Source software.

Bruce Perens

5 Considering the Economic Function of Software in a Business

It’s important to consider that most companies are not in the business of software
manufacturing, They sell ships, shoes, services, everything under the sun. However,
all but the smallest companies are enabled by software to some extent. Without
software, their business would be less efficient, or impossible.

Consider financial planning before computer spreadsheets, correspondence before
email, and customer-to-computer interfaces when the most sophisticated input device
in the customer’s home was a touch-tone phone. Today, we need software to do
business! Indeed, we need it so badly that even though most businesses don’t sell
software, any business of 50 people or greater is likely to employ a programmer,
web designer, or a script-programming systems administrator.” For those businesses,
software is essential enabling technology, rather than their product.

6 Enabling Technology vs. Business Differentiation

Enabling technology is essential to your business, but it’s not what you sell. If you
sell books, books are your profit-center, and software lives in a cost-center as an
unavoidable cost of doing business. A polemicist has said I'T doesn’t matter, but what
he is really telling us is that I'T isn’t your profit-center. You still need it to the extent
that it enables your business.

There are two main forms of enabling, cost-center technology: differentiating, and
non-differentiating. Differentiating technology is what makes your business more
desirable to your customer than your competitor’s business. For example, if you visit
the Amazon.com web site and look for a book, Amazon will also tell you about
other books that were purchased by people who bought the book you’re interested
in. And often the books it suggests are interesting enough that you will buy one
of those books as well. If you go to the Barnes & Noble site, they don’t have that
feature, and it’s no surprise that Amazon sells more books online. So, for Amazon,
the “recommendation” software is a business differentiator.® Obviously, it would be a
mistake to Open Source your business differentiators, because then your competitor’s
business might use them to become as desirable to the customer as your own business.

But in contrast, it wouldn’t hurt your business for your competitor to understand
how every bit of your non-differentiating software works. Indeed, that competitor

7 The US. Burcau of Labor Statistics repotts for 2004 show 2 249 000 people hold programming-related
jobs in the United States: 455000 are Computer Programmers, 800 000 are Computer Software Engi-
neers, 994 000 are Computer Systems Analysts, Database Administrators, and Computer Scientists. This
does not count 779 000 jobs held by Computer Support Specialists and Systems Administrators, who
generally perform at least some script programming, and Computer Operators, who held 149 000 jobs
(U.S. Bureau of Labor Statistics 2000).

8 Ironically, the Amazon “recommendation” feature is the topic of a patent-infringement suit brought
by Cendant against Amazon. The vurrent standings of “Cendant vs. Amazon” are: November 2004’
suit was renewed in June 2005, Amazon countersued in July 2005, but no news yet on the outcome.

Amazon.com

The Emetging Economic Paradigm of Open Source

might be the best collaborator you could have, if the partnership is limited to working
on your non-differentiating software, because their needs are most similar to yours.
This fact is demonstrated every day in the Open Source world, in which HP and IBM
are partners in developing software that helps sell the systems of both vendors, and they
remain fierce competitors at higher levels in the software stack where differentiation
between them is possible and effective.

Perhaps 90 % of the software in any business is non-differentiating. Much of it
is referred to as infrastructure, the base upon which differentiating technology is
built. In the category of infrastructure are such things operating systems, web servers,
databases, Java application servers and other middle-ware, graphical user interface
desktops, and the general tools used on GUI desktops such as web browsers, email
clients, spreadsheets, word processing, and presentation applications. Any software
that provides differentiating value to a non-software company is built on top of one
or more of those infrastructure components.

An important indicator of whether software is differentiating is whether or not
your competitor can get the same software. Neither Microsoft software nor Linux
and Open Source can help you differentiate your business for long, because they are
available to everyone. They differentiate against each other, they just don’t differentiate
your business. One or the other can save you money or make you more efficient, but
in general they don’t make your business more attractive to your customer.

Another important indicator of whether software is differentiating or not is whether
the customer can see the software’s effects. Your customer doesn’t care what OS you
run, unless your systems are crashed all of the time. She doesn’t care whether you run
Microsoft Office or OpenOffice.otg. You might have good reasons to care, but the
customer can’t see them.

Thus, to make your business more desirable to customers, you should spend
more on differentiating software that makes your business more desirable, and less
on software that doesn’t differentiate your business. Open Source is the key to
spending less on non-differentiators, by distributing cost and risk that was formerly
your company’s alone across multiple collaborating companies.

Of course, you will need to take an honest look at what software in your business
is differentiating and what isn’t. And this turns out to be difficult. A lot of companies
have not invented here syndrome. That’s when managers and technical people aren’t willing
to consider the work of outsiders, because they don’t believe that it could be as good
as their own. “NIH” is an expensive disease: it will cause your employees to duplicate
effort that is available elsewhere, instead of spending their time on the differentiating
software that is most important to your business.

Participation in Open Source makes our software cost-centers more effective,
because we can share cost and risk that we would otherwise be sustaining alone. What
do we do with the money that we save? It becomes additional profit, or is spent in
other areas where we need it more.

Bruce Perens

7 Economic Paradigms of Software Development

Since our businesses need software, we’ll need to develop it somehow. The main
economic paradigms for software development are:

Retail

— In-House and Contract

Efforts At Collaboration Without Open Source Licensing

— Open Source

Each is different from the other in:

— How they distribute the cost of development.
— How they distribute the risk of failure.

— Their efficiency in funding software development rather than overheads of the
process.

The degree to which others can be excluded from using the software. These factors
determine which paradigm is suitable for use in development of a particular piece of
software. It’s important to remember that the ultimate source of funds for software is
the customer, not the vendor. The customer can direct its funds to operations using
any of the economic paradigms to acquire the software it needs.

7.1 The Retail Paradigm

Retail is the paradigm most familiar to the average person, yet it is responsible for
less than 30 % of all software development.9 In this paradigm, the cost of software
development is usually borne by a single manufacturer. The manufacturer aims
to recover those costs, plus profit, from sale of the finished product. Thus, the
development expense is extremely front-loaded, with the entire development of a
product necessary before the manufacturer can begin to recover expense. The risk of
failure to produce a profitable product is borne entirely by the manufacturer.
Eventually, the cost of development is distributed to customers, if the product is
successful in the market. Since the retail development paradigm can not directly dis-
tribute cost and risk until the product matures, it is often necessary for manufacturers
to turn to investment markets as an external mechanism to distribute cost and risk.
The manufacturet’s need for outside capital is of long duration, since it could take
years to develop the software and its market, and additional time before the cost
of development can be amortized and it becomes possible to take a profit. Stock
markets increase the liquidity of the investment by allowing investors to monetize

9 Cf. the elaborations of “Packaged Software” at footnote 3 above.

The Emetging Economic Paradigm of Open Source

the perception of the company’s future potential, reflected in its stock price, rather
than the company’s actual earnings. Successful companies may re-invest profits in
the development of subsequent software products rather than return to investment
markets.

The overhead of the traditional brick-and-mortar retail sales paradigm is extremely
high, with the result that less than 10 % of the money paid for the software by the
end-user actually goes into product marketing, software development, and documen-
tation. Microsoft spent only 15% of its 2005 revenues on research and product
development. The rest of Microsoft’s income went into items that don’t directly
benefit the customer, such as the very expensive process of finding customers for
Microsoft’s products: overhead such as advertising, the design and manufacture of
an attractive package that is discarded after the sale, payment to the retailer for shelf
space upon which the product is displayed, sales staff, and profit. The 15 % figure
does not include the mark-ups of the retailer and wholesaler, which would bring the
portion of the product price that represents software development well below 10 %
(Microsoft Corp. 20006).

There is inefficiency on the purchasing side too, due to a mismatch between
customer requirements and the software purchased. The customer often purchases
software that turns out upon closer evaluation not to be usable for the application
in question, or is not deployed. Often the customer can not recover the cost of this
shelfivare. 'There are also losses because software companies fail or discontinue and
de-support products that the purchaser has not yet amortized. Since generally even
discontinued products do not have source available, they are left in an unsupportable
state and the customer has little choice but to write off their investment.

Combining these risk factors, we can arrive at a conservative estimate that 50 %
(Krass 2002, Gilbert 2003) of purchased retail software is not used, or not fully and
effectively deployed—the purchase is a failure. If we multiply the less-than-10%
efficiency of the retail paradigm at directing dollars toward software development by
the 50 % failure rate, we find that the efficiency of funding software development via
retail software purchases is lower than 5 %.

The most important implication of this extremely low efficiency is that the retail
paradigm can only be used economically to create products for a mass market. A
mass market will mask the inefficiency of the paradigm, because each customer
can pay a relatively small cost compared to the cost of the software development.
As an aggregate, they would still pay more than twenty times the cost of software
development.

There are many important software products that simply can’t be created using the
retail paradigm, because they would not provide a large enough market to amortize
both the cost of development and the large overheads of the paradigm. In addition,
many new products that could eventually build a large market will not be considered
by a manufacturer, because companies and investors can not be convinced that such a

Bruce Perens

market would develop, or the risk of failure is too high. This tends to damp innovation
within software manufacturers that make use of the retail software development
paradigm.

One telling example of the failure of the retail paradigm to innovate is the fact
that the most important innovation in the last decade of global computer business,
the web server and browser, had to be developed as an Open Source product at a
federally-funded university research laboratory. None of the companies that could
have completed the work were convinced that it would make money. Indeed, the
only company that did invest significant funds to develop the web (Autodesk, by
investing in Ted Nelson’s Xanadu project), chose not to complete the project because
the revenue model that Xanadu foresaw for the web (payment to content producers
for each word, with complicated tracking of derivative works and references) was too
difficult to develop. The eventual leader in the development of a successful web, Tim
Berners-Lee, did not see a need to develop any canonical revenue model, but left it to
his users to figure out a means of making money from the web.

And as we’ve discussed, since a retail business must approach as many customers
as possible in order to generate the highest possible profit, retail software is generally
made available to everyone. Thus, it is difficult or impossible for retail softwate to
differentiate the customer’s business.

7.2 The In-House and Contract Development Paradigm

In-house development is done by the customer’s own programmers, while contract
development is done by an outside company, generally as a work-for-hire for the
customer’s exclusive use. In both cases, the programmers are generally paid for the
act of writing software, rather than for the software as a product as would be the case
in the retail paradigm.

Another form of contract development is extensive customization of an other-
wise-available product by the vendor. For example, a medium-to-large company
may purchase a standard web server environment and then pay its vendor for the
customization of that environment to the customer’s particular business needs.

The customer has excellent control of in-house and contract development, because
the programmers won’t get paid unless they do what the customer says. The customer
can generally dictate whether the software will be exclusively for that customer or will
be made accessible to others. Because the customer can control distribution, this is an
excellent paradigm for development of differentiating software. Indeed, it may be the
only paradigm that really works for development of software that would differentiate
an end-user’s non-software business.

In general, a contractor will try to use some of the work he does for one customer
to leverage his business with other customers by re-selling work that’s already been
paid for. How successful he is at this depends on the contract terms and the honesty
of the contractor. If your contractor is confident that he can re-sell work he does

10

The Emetging Economic Paradigm of Open Source

for you, he might charge you less and you might benefit from some distribution of
cost and risk to the contractor and his next customer. However, this is not generally
an appropriate scenario for differentiating software: if your contractor is selling your
business differentiators, your business could soon be in trouble.

In exchange for the total control available through contract or in-house develop-
ment, the customer generally sustains all of the cost and risk of the development.
Because of that cost and risk, contract and in-house development may not be the
most cost-effective means of developing non-differentiating software. If a customer
is paying 100 % of the cost to develop new software that duplicates the function
of existing software that would be available to that customer for less, that’s called
re-inventing the wheel and it’s a waste of money. If the customer can stand having the
software distributed to others, and does not need absolute control over the develop-
ment, the Open Source or retail paradigms may be more cost-effective for developing
that particular piece of software.

In-house and contract development are reasonably efficient at directing most of
each dollar spent toward software development. Their efficiency in this regard is
50 % to 80 %, in contrast to the 10% of a brick-and-mortar retail paradigm. The
major sources of inefficiency are the costs of finding new customers for a contractor’s
business, the cost of retaining expertise that may not be fully utilized at all times, and
the contractor’s mark-up.

Many in-house and contract projects fail to produce working software that is
deployed in the customer’s business and meets the goals set for it. We can attribute
to this paradigm a success rate of 50 % (Johnson et al. 2001, U.S. General Accountion
Office 1997), similar to the overall success rate we assigned to the retail paradigm.

7.3 Efforts At Collaboration Without Open Source Licensing

Consortia used to be the standard means of collaborating between companies upon
software development. Closed consortium software development has a record of
titanic failures. More recently, Billion-dollar closed consortia have a record of being
replaced by more successful Open Source projects. Consider Taligent and Montetey,
two consortia intended to create a replacement for UNIX. Linux replaced them.
Consider the Common Desktop Environment project, which has been replaced by
the Open Source GNOME desktop at most of the companies that supported CDE.

A few years ago, the huge agricultural corporation Cargill founded a consortium
with the stated intent of providing its partners with the benefits of Open Source while
also providing secrecy and sharing the benefits of the software only with consortium
members. This is called a gated community. Two years later, Cargill walked away from
the project it founded. A closed consortium is simply the wrong structure for the
development of non-differentiating software. It makes sense to throw the doors wide
open when you don’t have differentiation to protect and admit members that can
make a useful contribution even when they can’t pitch in funding. A consortium costs

11

Bruce Perens

more because there are fewer members to share cost and risk than with an Open
Source project, yet there’s much more structure and overhead than there would be for
an equivalent Open Source project. Closed consortia generally are directed through
pay-for-say, while technical merit would be the case for Open Source. With pay-for-say, a
member can work to the detriment of the overall project when that is to the member’s
advantage. Consortium product planning often devolves into irresolvable arguments
among the companies, because each has a different marketing idea and matketing
arguments between companies are subjective and difficult to resolve.

Given the poor history of consortium development and, in contrast, the high rate of
success for large Open Source projects carried out by the same groups of companies,
it seems that the fairness imposed by Open Source licensing is an essential component
of effective collaboration between a large number of parties with different interests.

7.4 The Open Source Paradigm

In the Open Source paradigm, multiple entities (individuals, companies, academic
institutions, others) come together to develop a software product. Generally the initial
development is done by a single entity as in the in-house and contract development
paradigm, and the software is released to the public as soon as it is useful to others,
generally before it would be considered a finished product and thus much earlier than
a retail product would be released. Once the software is useful, other entities make
use of it. Only when the software becomes useful to others does the Open Source
paradigm work fully, because only then will other parties have an incentive to use the
software. Once they are using the software, these other parties will have an incentive
to extend the software to implement additional features that are of interest to them.
This extension is performed by the customet’s own employees or contractors under
the customer’s control.

The incremental cost of adding a feature is much smaller than the cost of the entire
development. Parties that create modifications have an incentive to write them in
such a way that they will be accepted by the other developers on the project and will
be merged into the main body of source code that is shared by all developers. If this
merge does not happen, the continuing cost of maintaining the added feature will be
higher, since its developers must track changes to the main source code and maintain
compatibility with that changing base.

Thus, Open Source tends to foster a community of developers who make contri-
butions to a useful product. The cost and risk of developing the product is distributed
among these developers, and any combination of them can carry on the project if
others leave. Distribution of cost and risk begins as soon as the project is mature
enough to build a community outside of its initial developer.

Open Source is developed directly by its end-users. For example, Apache web
server features are added by the companies that need those features to operate their
own web sites, or sometimes by contractors working for those companies.

12

The Emetging Economic Paradigm of Open Source

The customers for a particular Open Source product generally identify themselves:
they search for the product in a directory of Open Source software, and then they
download and test the software. If tests are successful, they deploy it. Thus they gain
a continuing interest in the product. At that point if they desire additional features to
the product, they have an incentive to become co-developers of the software they are
using.

The companies that join Open Source collaborations are seeking to use the software
in a non-differentiating, cost-center role. It’s not important to these companies that
Open Source does not in itself produce a profit. Their profit-centers are things
other than software, and software is for them an enabling technology. In order to
continue to operate their profit-centers, they must make some investment in their
cost centers. In the case of differentiating software, they have little choice but to
make use of the in-house or contract development paradigm, because they need to
prevent their differentiators from falling into the hands of their competitors. For their
non-differentiators, they have the choice of the retail or Open Source paradigms. But
which is more efficient?

Because the customers are self-identifying, Open Source does not have the ineffi-
ciency of the retail paradigm, which must make use of advertising or other expensive
mechanisms to seek customers.!” Tt is at least as efficient in directing dollars to
software development rather than overhead as the in-house or contract development
paradigm. Because of its greater efficiency in allocating resources to development
rather than overhead, the Open Source paradigm can be used to develop products
that would not support a mass market, and thus could not economically be developed
within the retail paradigm.

Engineer Craig Small, a builder of network infrastructure, sums up the advantages
for his customers:

“Using Open Source cut way down on startup software costs. This was
important because it was the way to get in the door with that particular
customer. I was going to build the network management system from
scratch, until I found a project that was close enough to what I needed.
I could spend a fraction of the hours on the problem compared to what
I would have needed to implement from zero.

Expanding and customizing Open Source is by far easier to do, because
the developers expect from the start that people will extend their work

10 We do, however, see advertising by various entities connected to Open Source. This generally concerns
hardware or services, rather than the software. In some cases the Open Source teams make use of
low or no-cost advertising venues such as web banner advertising to draw new users to their products
and thus expand their development communities. An ad in The New York Times for Mozilla Firefox
(December 12, 2004) is notable as it is motivated by the political goal of maintaining the open-ness
of the web and reducing dominance by Microsoft over the browser. The advertising was funded by
charitable contributions from parties that in general have no pecuniary interest in I4rcfox.

13

Bruce Perens

in ways that they haven’t thought of, and thus they write in a style that is
easier to extend. Proprietary software creators write as if nobody outside
of their company will ever read their code. We took an Open Source
project for entirely different hardware from ours, and easily got it to
monitor our equipment.

I have returned my extensions back to the Open Source project. Thus,
I have confidence that if I leave the company, the extensions will still be
looked after, at least by other members of the project.

There is now a community of people with the same sort of technical
needs, both developers and non-programmer users, that has sprung up
around the software project that we all collaborated upon. We discuss
how to better satisfy our needs, and pool ideas that we would never have
had on our own.

Proprietary software has costs that businesses have only started to
consider. Organizations like the Business Software Alliance have raided
businesses with federal marshals, demanding sufficient documentation
that the company purchased a license for every computer on site. Much
time and effort is spent making sure that companies comply with in-
creasingly onerous licensing rules. Why can’t I take that Windows XP
off of my laptop and put it on the desktop legally? Open Source avoids
that unproductive nonsense.”

Not all Open Source projects succeed. Most immature Open Source projects die
on the vine or remain solo projects that use little in resources. But the expense
of such projects is insignificant, because they die without first attracting significant
customers or a developer community. More mature Open Soutce projects may
die when something better comes along, but often it is possible to use the actual
source code, data, and skills from one project in another, and thus the investment in
development of the project is not lost.

The cost-of-participation in mature Open Source projects is very different from the
costs of retail or in-house and contract development. The major expense is the
time-cost of employee participation. This figure is a combination of the personnel
cost of software evaluation, the personnel or contractor resources spent to adapt
existing Open Source to customer needs and to support the Open Source for internal
users, and the possibility that time will be invested into software that is eventually
replaced due to a failure to track customer needs.!! The maximum cost for Open
Source would come when there is no community other than the customer: this
would be similar to the cost of contract or in-house development, in which one

11 There is a cost-of-participation for retail software as well. Part of that is discussed here as the she/fivare
problem. The after-purchase cost is not discussed, but includes such things as the cost of documenting
problems to the vendor (often an all-day task for a programmer) and going through service escalation
procedures with the vendort’s service staff until those problems get attention.

14

The Emetging Economic Paradigm of Open Source

customer supports the entire expense. The actual cost will be lower depending on
the number of active participants and the work required. The lost investment is
generally personnel time. Taking this into account, the Open Source paradigm yields
an economic efficiency at least as great as the in-house and contract development
paradigm, and much greater than the retail paradigm.

7.5 Summary of Software Production Business Methods

The Open Source paradigm has several significant economic advantages over the retail
or in-house and contract software production paradigms: it combines efficiency in
allocating resources to software development with distribution of cost and risk better
than either of the other dominant paradigms of software development. It is amenable
to the development of products that are untenable under the retail paradigm because
there is no mass market. Open Source can distribute the cost and risk of projects,
while the in-house and contract development paradigm would focus all cost and risk
on one party. Open Source distributes cost and risk directly, rather than requiring the
use of investment markets. Distribution of cost and risk starts much earlier than it
would in the case of the retail paradigm. Open Source gives the customer complete
control over customization of the product. However, it does not give the customer
control over who has access to the product. Thus, Open Source is generally not a
good mechanism for developing differentiating software.

Businesses that require non-differentiating software (really, all businesses) would be
well advised to shift some development to Open Source and reap greater economic
efficiency. Participation in Open Soutce development communities should be an
important part of any businesses overall strategy to shift development dollars from
non-differentiating to differentiating software.

8 Who Contributes to Open Source, and How Do They Fund
That?

There are several main sorts of Open Source contributor:

— Volunteers
— Linux distribution companies

— Companies with a single Open Source program as their main product

Companies for whom Open Source software enables sales of hardware or
solutions

Service Businesses

End-user businesses and their contractors

— Government

15

Bruce Perens

— Academics and scientific researchers

Each of these sorts of entity works differently within the economics of Open Source
software, drawing from a different source to fund their contributions. We’ll explore
each one.

8.1 Volunteers

I (Bruce Perens) was an example of this sort of contributor from 1993 through 1998,
when I worked extensively on Open Source development that had no connection to
my employment.

The 2002 FLOSS study by the International Institute of Infonomics (2002) reported
that the creation of Open Source was, at that time, primarily a hobby activity! But
their participation of individuals without an immediate financial motivation in Open
Source software development is serious enough to transcend the term hobby. Perhaps
volunteer is a better description, because of the obvious professionality of their work, 2
and the fact that their motivation is not pecuniary in nature.

Eric Raymond proposed that the volunteer’s motivation is mainly intangible, and
that a particularly important motivator is participation in a community of respect
in which developers are recognized by their peers for the quality and innovation in
their work. The FLOSS study surveyed Open Source developers regarding their
motivation, found that many of them are motivated by technical curiosity and the
desire to learn. I feel that their motivation is similar to that of an artist: just as a
painter wants people to appreciate his paintings, a programmer wants to have users
who appreciate his software.

There is a continuing transition from volunteer to professional, as Open Source is
used increasingly in companies that then become motivated to patticipate in its con-
tinued development. Former volunteers are gaining employment in organizations that
support their Open Source work on company time. Open Source supporters within
companies come “out of the closet” to become internal experts as their employers
express an interest in Open Source.

8.2 Linux Distribution Companies

Red Hat and Novell are well-known for distributing Linux-based systems. But,
surprisingly, businesses dedicated to selling Open Source software as their main
product do not create the majority of Open Source software. They act mainly as
integrators of the work of others. They do a lot of maintenance work in order
to eliminate bugs for their paying customers, and they do original Open Source

12 Studies by Coverity in collaboration with Stanford University (Kerner 2006) show, that the average of
the most widely used Open Source applications have 0.434 bugs per 1 000 lines of code while, according
to Carncgic Mcllon University (Delio 2004), non-Open-Source commercial software generally scores
20-30 bugs per 1000 lines.

16

The Emetging Economic Paradigm of Open Source

software development where they feel this is necessary to enable their product or a
new market. The Linux distributions are for the most part medium-sized companies,
and their employees represent a small but active component of the overall population
of Open Source contributors. Sometimes they inflate their impact in marketing
communications. For example, one Linux distribution promotes that it employs
300 programmers, but a much smaller proportion make regular contributions to
Open Source software. The majority seem to be doing “sales engineering” or working
on internal solutions for customers.

Indeed, the economics of Open Source seem to work worst for Linux distributions.
When you Open Source your business differentiators, your competitor can appropriate
them and reduce your business differentiation. That is the quandary of the Linux
distributions: their product is mostly Open Source, their customers want it to stay that
way, and they struggle to differentiate a product that the customer knows is available
elsewhere without charge.

Linux distributions originally tried to deal with the differentiation problem with the
first generation of Open Source vendor business plans, which Eric Raymond explains
in “The Cathedral and the Bazaar.” These models mostly coupled some other product
to Open Source software as the money-maker: service on the Open Source software,
or a proprietary softwate addition to the Open Source component. The Open Source
software would be enabling technology for a business with some other component
driving its revenues, but the money-making component would be very closely coupled
with the Open Source software. But unfortunately, services alone were not enough
to make the distributions profitable during Linux’s early-adopter period.

Today we are experiencing the second generation of Open Source business plans.
Some Linux distributions are attempting to imitate proprietary software. Behind their
costly box of software or per-seat license is a product that the customer could acquire
without charge through other channels. Several strategies are combined to make this
work: the development of a brand that is perceived to hold more trust or value than
the naked software. The vendor invests resources into certification by proprietary
application vendors, who each want to support only a few distributions.!> Customers
who need support for a proprietary product on Linux thus have an incentive to pay
for that vendor’s version of Linux. Some support services are sequestered, such as
security problem reports or bug patches, so that they will only be available to people
who have purchased the costly box and per-seat licenses. If the customer loads
the free software on more systems than he’s paid for and the vendor finds out, the
customer will be penalized by the revocation of his service contract and the withdrawal

13 'The Linux Standard Base was meant to make it possible for proprietaty application vendors to support
all standard-compliant Linux distributions. It has meanwhile been accepted as an international standard
by ISO, with several prominent distributions (RedHat, SUSL, Ubuntu, Asianux, Mandriva, etc.) being
certified. I.SB is a Workgroup of the Free Standards Group (http://freestandards.org) with members,
such as HP, IBM, Intcl, Novell, Sun, AMD, Google, 'ujitsu, Dcll, or CA (http:/ /www.freestandards.
org/en/LSB_Distribution_Status).

17

http://freestandards.org
http://www.freestandards.org/en/LSB_Distribution_Status
http://www.freestandards.org/en/LSB_Distribution_Status

Bruce Perens

of security information critical to the continued operation of the software. Perhaps
the best name for this business model is proprietary Open Source, in which services are
offered but the business is operated in the proprietary box-software model. This
business model is essentially antagonistic to the volunteers who have created much
of the Open Source software. They weren’t out to develop another Microsoft, and
they resent the sequestering of service information on their software. It is in conflict
with the spirit, but not the letter, of Open Source licensing such as the GPL.!* In
general, volunteers help the companies they approve of. As the internal experts on
Open Source for their employers, they recommend the companies that they approve
of. And thus there will be significant challenges to the proprietary Open Source model.

It’s important to emphasize that not all Linux distributions engage in proprietary
Open Source, and that proprietary Open Source is not the dominant business model
for Open Source software development. The vast majority of contributors to Open
Source belong to the other categories examined here.

The money used to purchase Linux distribution “seats” and their associated services
comes from enterprise I'T department cost-centers.

8.3 Companies With a Single Open Source Program As Their Main Product

This sort of company can be divided into several categories:

— Mixed Open Soutce and proprietary licensing model.
— A core Open Source program with proprietary software accessories.

— Pure Open Source plus services model.

We’ll explore each category.

Mixed Open Source and Proprietary Licensing Model

Examples of this sort of company are MySQI. AB and Asterix PBX, which produce
databases, and Trolltech, which produces the Qt graphical user interface toolkit. This
sort of company vends the same software under two different licenses: an Open
Source license and a commercial license.

The Open Source license chosen, often the GPL, includes a “poison pill” meant to
make production of proprietary derivative works commercially untenable. Since the
GPL requires that all derivative works must be distributed in source-code form under
the GPL or a GPL-compatible license, this would remove the business differentiation
from any software to which it is applied.

To escape the poison pill and preserve business differentiation, the producer of a
proprietary derivative work must purchase a commercial license for the same product.

14 Analysis of pro-bono counsel, Free Software Foundation, in private communication.

18

The Emetging Economic Paradigm of Open Source

This provides the producer of the Open Source software a direct revenue capture for
unit sales of software to creators of proprietary derivative works.

This model works only for software that will be combined into derivative works,
such as a software library. It generally isn’t usable for applications.

The future viability of this model is in question, because a programmer can make
a “server” of a software library and export all of its functionality to another program
without creating something that would be considered a derivative work under copyright
law or the definitions in Open Source licenses. In UNIX parlance, servers are referred
to as daemons, and thus the practice of embedding software in a daemon in order to
avoid creating a derivative work is called daemonization. It is possible that a future
Open Source license could restrict this practice.

Today, it is possible to make use of the MySQL database server in a proprietary
application without a commercial license, by using the MySQL Database Engine as
a server (its usual mode) and making use of a special variant of the MySQL Client
Library that is under appropriate licensing terms for proprietary applications. Of
course, MySQI. AB doesn’t support that client library.

This sort of company generally supplements its commercial licensing revenue with
additional revenue from training and software development services.

The main customer of this sort of company is the enterprise user, in the case of
MySQL. Trolltech’s main customers are embedded device developers and software
application developers. The funds used to purchase these products come from
cost-centers within IT and software development departments.

A Core Open Source Program With Proprietary Software Accessories

Eric Raymond calls this model Widget Frosting and discusses it in detail. Sendmail
Inc. is an example of this sort of participant. Sendmail Inc. has created a constellation
of proprietary products around the Open Source Sendmail email server. This funds
ongoing maintenance of the core Open Source product. Some of the Linux distribu-
tion companies also intend to operate using this model, and some of IBM’s business is
under this model: for example their sales of the proprietary DB2 database on Linux.
This sort of company essentially operates as if it were a proprietary software business.
The funds used to purchase its products come from IT department cost-centers.

Specialization In One Open Source Program Plus Services Model

This model was proposed to be an important one in Eric Raymond’s paper, but
has not performed as well as was expected so far. Many Open Soutce developers
supplement their income by providing services upon the software that they develop,
and there are a number of new companies pursuing this model—some with sizable
venture funding, Some of these new companies seem to be operating a certification
model, servicing a particular version of the software that they certify, perhaps in the

19

Bruce Perens

manner of the proprietary open source business model at some of the Linux distribution
companies.

Some small and medium-sized companies have been able to produce sustainable
revenue while developing Open Source software as their major business focus and
providing services on that Open Source as their only profit-center. But many have
failed, some spectaculatly like Linuxcare (now Levanta). Companies that would
be support customers seem to prefer to do their Open Source support inside, or
through a vendor with whom they already have an existing relationship or whom can
service more than one program. There may also have been an early-adopter problem.
Early-adopters in general do not want the hand-holding of a service company. Time
will tell if this model can perform effectively.

The funds for services provided by this sort of company come from IT department
cost-centers.

8.4 Hardware Vendors

Examples of this sort of company are IBM and HP. Hardware is a great product to sell
along with Open Source software. It costs a penny to copy software, but you can’t copy
a loaf of bread without a pound of flour. Until we have the Star Trek “replicator,”!
hardware is a difficult-to-copy product. Allowing the customer to know something
of hardware internals doesn’t necessarily remove all of its business differentiation,
as might be the case for software. The hardware manufacturers that participate
in Open Source development do so to enable sales of their hardware products.
Hardware is useless without software, and specifically computers are useless without
the operating system that interfaces the computer hardware to software applications.
Open Source developers seem to be better at systems programming than any other
form of programming, so far, and the Linux operating system kernel is now as good
as, of better than, many proprietary operating systems for similar hardware. Hardware
manufacturers formetly spent billions on proprietary operating systems that, for them,
were always enabling technology rather than a profit-center. The margins were in the
hardware itself. Many of these manufacturers have eagerly embraced Linux because
it allows them to distribute the cost and risk of the operating system among multiple
companies, has a cost-efficiency greater than that of similar proprietary operating
systems, and is in general desirable to the customer.

Hardware companies are good at producing Open Source because there isn’t nearly
so much conflict between Open Source and differentiation for them as there might be
in a software company. Making software products Open Source enables sales, doesn’t

15 The replicator is a fictional device that manufactures many different physical objects on demand,
presumably from designs stored on a computer. In the Star Irek: The Next Generation television
series, a character walked up to the device and gave it a voice command: “tea, earl gray, hot” A cup
and the tea were manufactured instantly.

20

The Emetging Economic Paradigm of Open Source

reduce their hardware-based business differentiators, and thus does not threaten their
profit center.

Generally this sort of company supplements its hardware income with services,
and sometimes training. The funds for hardware and services provided by this sort
of company come from I'T department cost-center hardware budgets.

8.5 End-User Businesses and Their Contractots

eBay is an example of this sort of contributor. Many companies make use of Open
Source software in their own operations. Web applications are particulatly important,
but there are many others. And these companies make up a significant portion of the
Open Source contributors. In general the contributions come from internal software
support and development staff, or contractors supporting the company, who modify
the Open Source software to fit the company’s needs.

What is most interesting about this sort of contributor is that they are the main
customers of essentially all of the other sorts of companies that contribute to Open
Source software development. Their cost-center dollars fund the work of the other
sorts of companies analyzed here. And they appear to be putting some of those
dollars directly into Open Source software, either through use of their own staff or
via contractors working directly for them, instead of going through the traditional
intermediates.

But why should this sort of company should do work outside of its core compe-
tency? Core competency is a property of individuals more than of companies. Thus,
you should consider not whether an Open Soutce software project is the focus of your
business, but whether you can operate your business most economically by making
the Open Source participation a focus of some staff members. The main advantage
for your company is the reduction of cost and risk, and an improvement of the degree
of control that you have over your software. Consider today the degree to which
software controls your business. Do you control the software?

8.6 Service Businesses

A number of service businesses create solutions by integrating multiple Open Source
programs with “glue” software specialized for the particular customer. Other busi-
nesses provide service for a collection of Open Source programs. This sort of business
participates in the development and maintenance of many Open Source programs,
but perhaps not intensively in any one. In general, the motivation of the end-user
businesses that employs this sort of contractor dominates that of the contractor it-
self, and thus these businesses should be considered under End-User Businesses And
Their Contractors, above. Some businesses vend a web service under the application
service provider (ASP) model, building mostly upon Open Source software. There
is a loop-hole in many Open Source licenses (particularly the GPL as it exists today)

21

Bruce Perens

that protects differentiation of ASP businesses. The requitement to provide soutce
code doesn’t trigger until the software is distributed, and an ASP need only perform
the software for the customer, rather than distribute it. Since this is widely regarded
as a flaw in the GPL, it may not persist in the next version of that license.

8.7 Government

Government’s use of Open Source is similar to the way that business approaches
Open Source for its cost centers. However, government is expected to function for
the benefit of the citizens and is not generally thought of as having profit-centers of
its own. Rather, it provides services that enable economic and social activities.

Government contracting should not provide a commercial advantage to a partic-
ular vendor outside of the direct revenue from the products or services purchased.
Government should especially not lock itself to a particular vendor after the contract
term because of switching costs. It’s poor policy for government to lock its ven-
dors or citizens into use of a particular vendor’s product for communicating with the
government, as this would provide an inappropriate advantage to the vendor.

All vendors can make use of Open Source components with appropriate licensing,
Such use can assure that the software interface to government facilities is an open
interface that can be utilized by all vendors. Thus, it can facilitate e-government to
make use of Open Source for government-to-citizen, government-to-business and
government-to-government interfaces.

Government carries out some activities solely for the public benefit, and can carry
out Open Source developmentin this capacity. This is generally done through research
funding.

8.8 Academics and Scientific Researchers

Academic research projects have historically been large contributors to Open Source,
and mostly graduate rather than undergraduate work. In general, an undergraduate
class does not provide sufficient time for a student to come up to speed on an Open
Source project and make a contribution. In contrast, graduate research projects are
often years in duration. A large body of Open Source software came out of the BSD
(Betkeley System Distribution) project funded by the U.S. Department of Defense.
Additional academic research projects produce more software daily.

There are vigorous Open Source communities involved in scientific research. In
science, the maxim is publish or perish, and Open Source fits that well. To be
considered valid, scientific research must be capable of being duplicated. If an
experiment doesn’t turn out the same way when performed by another scientist, that
may mean that the research is erroneous. These days software makes up a large part
of many experiments, and a human-language description of the experiment may not
convey every detail of how it has been performed. If the researchers can share code,

22

The Emetging Economic Paradigm of Open Source

outsiders can examine their software for errors and duplicate their experiments more
easily.

The community of scientists researching a particular field of study is small. Retail
software would not be effective in developing such specialized software. Open Source
is the best way for scientists to share the cost of developing software to support their
research.

Proprietary software supporters have tried to turn back the tide of academic contri-
butions to Open Source by forging new partnerships between college research projects
and proprietary software companies. This trend is especially disturbing when publicly—
funded research work results in patents that are transferred to the proprietary software
company partners, since it is likely that those patents will be prosecuted against the
very taxpayers who funded their creation. In general, publicly-funded work should
be maximally utilizable by the public that funded it. DARPA (the U.S. Department of
Defense Research Grant Otganization) and the University of California recognized
this when they applied the BSD License to the pioneering extensions of UNIX created
at the university. That licensing allowed any Open Source or proprietary use of the
software.

Some research work is performed by unsalaried students. When they are salaried,
the funds for their software development generally come from grants. Governments
are the largest provider of such grants, a secondary source is philanthropic, and some
funds come from industry partners.

8.9 Summary of Contributors To Open Source Projects

The largest contributor to Open Source development today may still be the volunteer.
There is a conflict between business differentiation and Open Source that makes its
economics work worst for the sort of business that would generally fund the same
sort of development in the case of proprietary software. Businesses without such a
conflict are more effective at funding Open Source development. Thus, hardware
manufacturers have taken a large role, and end-user businesses are taking an increasing
role.

9 How Open Source Does Product Marketing

A common objection to Open Source is the perception that Open Source development
will not be well focused or targeted. People are used to development that is directed by
one company in an extremely focused manner, driven by a product marketing process.
Some mature Open Source projects do perform their product marketing the way a
company would. But while a company generally would develop an overall strategy
that drives all of its software development, there is no global planning authority for
Open Source, and no overarching strategy followed by all Open Source developers.
However, it’s an error to ask for such a thing: you can’t compare Open Source to a

23

Bruce Perens

company, it’s an entire industry. A central planning authority for an entire industry
would indicate something other than an open market. The product marketing for the
global Open Source community operates in the way that a capitalist nation operates
its economy, rather than the way a company plans its products.

The paradigm by which Open Source does product marketing can be described as
a “massively-parallel drunkard’s walk filtered by a Darwinistic process.” First, very
many people all over the world develop whatever they want, going in any direction
they wish without any central coordination. Out of this process come many potential
products that would not interest more than a few other people, some products that are
interesting to at least fifty people, and a few products that are interesting to millions
of people.

Fifty people who want the same thing, but are geographically distributed all around
the world, can form a viable software development team via the Internet. The spare
time of fifty people who are otherwise employed turns out to be sufficient resource
to enable the development of large and complex software products, and of course the
size of the development team increases as the product matures and becomes of interest
to more people. Thus, by leveraging upon the excellent collaboration that is possible
when using Open Source licensing, it is possible to initiate and successfully carry out
projects that would otherwise be beyond the capability of any of the participating
entities.

But how do 50 people who haven’t met work together to form a viable software
product? Part of the reason this works so well is that software is extremely modular by
nature, and thus many people can work on different segments of the software, almost
autonomously, if they can come to agreement about how the pieces fit together. A
good example of this is the Debian GNU/Linux distribution. This system includes
about 16000 software packages maintained by over 1000 volunteer developers in
many nations around the world. When these packages are combined, the result is a
reliable and well-integrated system. That system has supervised experiments while in
orbit on the Space Shuttle, and has a user community placing it in the Top-5 of all
distributions.

But how can we develop products when everyone has the freedom to go their
own way and there isn’t a real boss? This seems odd to business people, until
they realize that this is exactly how capitalism works in democratic countries. In
the broader economy of a capitalistic nation, many companies set out to develop
products without any central guidance from the government. They all compete with
each other, and some products succeed and build a market while other products fail.
Loose collaborations arise between companies for the purpose of building markets
for new products. The role of the government, the only entity that conceivably could
guide the economy, is in general limited to the injection or removal of capital from the
economy, tax incentives and funding programs, and the enforcement of laws designed
to create fair markets.

24

The Emetging Economic Paradigm of Open Source

Most sensible people have accepted that a “sure thing” is rare in gambling or
stock-picking, and yet they expect marketing departments to make reliable forecasts
in guiding new product development. Marketing departments have no crystal ball. If
a sufficient number of self-guided developers are available, a drunkard’s walk strategy
will outperform conventional product marketing. The massively-parallel drunkard’s
walk tries many different paths, and thus has a higher probability of accessing a
successful path. The Darwinistic filtering is what recognizes that a particular path is
successful.

Most business people are adamant that they want to live in a free market economy,
and that the government should not take a strong guiding role in determining what
products will be produced and how they are made. They say this because they
understand that the free market is more likely to produce good products and a
healthy economy than any central planning process. It should be no surprise to them,
then, that the open-market-like paradigm of Open Source can sometimes do a better
job than the central control of marketing departments and management at creating
desirable products.

10 Is Open Source Self-Sustaining?

Many people have trouble understanding how Open Source could be self-sustaining if
it does not operate according to the retail development paradigm. What pays for such
software? It is funded directly or indirectly as a cost-center item by the companies
that need it. Those companies need a great deal of cost-center, non-differentiating
software. They are willing to invest in its creation through the Open Source paradigm
because it allows them to spend less on their cost centers by distributing the cost and
risk among many collaborators, and makes more efficient use of their software dollar
than the retail paradigm. This is essentially the same source of funding that pays for
proprietary software. It’s important to remember that the software manufacturer isn’t
the ultimate source of funds: the customer is.

10.1 What is the Economic Impact of Open Source?

We defined the major economic impact of Microsoft as: The fact that they have
enabled a great many businesses—their customers—to do business more efficiently,
and to have businesses that they could not operate at all without the software that
enables them. The same definition applies to Open Source.

It is a fact that Open Source enables a majority of web servers today, a majority
of email deliveries, and many other businesses, organizations, and personal pursuits.
Thus, its economic impact must already be numbered in many tens of Billions of
dollars.

Any improvement in technology that permits business to function more efficiently
means the economy runs more efficiently. In this case, Open Source enables business

25

Bruce Perens

to spend less on software and to have better quality and more control over its software.
The money that is saved on software doesn’t disappear, the people who save it spend
it on things that are more important to them.

10.2 What Does All Of This Mean To Software Producers?

This discussion has been mostly from the perspective of the software-using business,
who ultimately pays for software development, rather than the software-producing
one. But what does this mean to software producers?

Does your business really sell finished software? Some businesses sell the act of
software creation rather than the software itself. This is the case, in general, for
consulting and “solutions” companies. Your customers will be willing to pay for the
creation of Open Source software.

In the case of a business that wishes to produce software for sale, rather than sell
the service of programming or training, Open Source will be a difficult product to
monetize.

It may be that Open Source eventually causes a reduction in demand the for
proprietary software. This would not, however, reduce the demand for programmers,
because the demand for software in general would not decrease. The displaced
proprietary programmers would move to an organization that can produce Open
Source software in an economically successful manner.

It is possible that programmers who move to a less entrepreneurial setting could
earn less. However, surplus profits in proprietary software companies have historically
been distributed to management in much larger portions than to staff. It is the rare
programmer that has been able to profit from a stock incentive windfall from a
company whose products are predominantly software offered for sale.

10.3 What Effect Does The Free-Rider Problem Have Upon Open Source?

The Free-Rider Problem is familiar in economics. What do you do about people who
take advantage of a product or service without providing any return to the provider
of that product or service? Do you have a mechanism to prevent free-riders?

All Open Source users start out as free-riders. They download and try the software,
and perhaps deploy it, and do not generally consider contributing to that software’s
development until they are already using it and desire an additional feature.

If they desire an additional feature, they may implement that feature themselves
rather than pay one of the initial developers. At this point, are they still free riders? No.
Businesses that join an Open Source project as developers contribute some software
to the product, and all of those businesses derive an economic benefit from making
use of the software in a cost-center of their business. The interests of the various
developers are generally similar because they have self-selected a particular software

26

The Emetging Economic Paradigm of Open Source

product as one useful to them. The contributions of any one developer are generally
of use to other developerts.

There are developers that are not motivated by the desire to provide software for
a business cost-center. These are individuals whose motivations are primarily artistic,
and scientific researchers.

Volunteers derive emotional fulfillment from having users for their software, just as
artists derive fulfillment from having others appreciate their paintings. For volunteers,
users provide an intangible benefit which the volunteer desires. Thus, those users
should not be considered free-riders.

Companies that place importance in a particular Open Source product tend to hire
developers who have already gained stature as a developer of that product. Thus,
individuals who have started with no pecuniary interest in the Open Source project
tend to find employment with an organization that does have such an interest. And
thus individuals who participate in Open Source development often reap an economic
gain from that participation. This is another reason that users should not be considered
free-riders by these individuals.

Scientific researchers have their own paradigm of constant exchange of knowledge
similar to that in the Open Source community, because science advances most rapidly
when discoveries are made known to other scientists who can add their intuitions
to them. Scientists gain fulfillment from the publication of their work, because this
increases their stature among other scientists and in general determines the success
of their careers. Scientists routinely use Open Source as a means of publishing the
software component of their work. In addition, scientists are motivated by the desire
to be of benefit to society, and wish to see other people benefit from the use of
software developed through scientific research. Thus, to scientific participants, users
are of benefit and should not be considered free-riders.

And finally, users are the people whom we recruit to become more active partici-
pants in an Open Source project, just as retailers try to recruit the general public to
buy their products. Invariably we are successful with some of them.

There is some question regarding whether the free-rider problem is as significant
in the case of software as it is for other sorts of products, and whether it applies to
Open Source at all. A free-rider on a bus uses the scarce resource of a seat, so that
a potential paying rider could be denied a chance to ride the bus. A free-rider who
has bootlegged a copy of Microsoft Windows may or may not diminish the market
for paid copies of Windows, but does not use any scarce resource that would exclude
other Windows users. A free-rider using Open Source does not diminish a market or
use any scarce resource.

All of this leads me to believe that the Free-Rider Problem is not a significant
detriment to Open Source development.

27

Bruce Perens

10.4 If Open Source Works, Why Don’t We All Build Our Own Cars?

The Open Source paradigm works well for many products where the major value of
the product is its design. It’s most successfully been used to date to produce software,
an encyclopedia, and integrated circuit designs.

The integrated circuit designs are programmed into a field-programmable gate—
array, a special device that can be programmed with a design and will then immediately
behave as a circuit with that design. This is an example of a field in which hardware
is very much like software.

However, most things are not software. It only takes a cent’s worth of resources
to make a copy of a piece of software, but it takes a pound of flour to make a loaf of
bread. Someone has to farm the wheat and grind it into flour, and those efforts have
to be paid for.

Automobiles, of course, are much more complex than bread, and it takes a great
many physical processes with expensive tooling to manufacture them. Consider that
to make an electric motor, one must mine and refine metal, then draw wite, roll sheet
metal, cast and machine bearings, and then assemble all of these pieces into very
precise forms. It should be no wonder that it takes an entire economy to manufacture
an automobile, while a single individual may produce an important software product.

When the day comes that we can make complex physical products by producing their
designs and directing a machine to manufacture them from easily-available materials
and electricity,!® the economy will change radically. Today, we are limited to producing
individual parts with computer-controlled milling machines, a slow and dirty process
that still requires manual intervention. A healthy Open Source community has evolved
around such machines, and we are starting to see them share part designs. But the
science of computer-controlled manufacturing will have to improve tremendously
before we can have “Open Source cars.”

11 Summary

Open Source is self-sustaining, with an economic foundation that operates in a
capitalistic manner. It does not require any sort of voodoo economics to explain. It
is an extremely beneficial component of a free-market economy, because of the very
many people and businesses that it enables to make their own economic contribution.
It is more efficient than other economic paradigms of software development for
producing software that does not differentiate its user’s business. Non-differentiating
software makes up the lion’s share of all software in a business, and businesses would
be well advised to pursue Open Source collaborations for producing such software.

16 Cf. the elaborations of the replicator at footnote 15 above.

28

The Emetging Economic Paradigm of Open Source

References

Delio, M. (2004), ‘Linux: Fewer Bugs Than Rivals’, Wired.con .
http:/ /www.wired.com/news/linux/0,1411,66022,00.html [Feb 21, 2007].

Ghosh, R. A., Glott, R., Krieger, B. & Robles, G. (2002), FLOSS Final Report—Part 4: Survey
of Developerts, i ‘Free/Libre and Open Source Softwate: Survey and Study’, International
Institute of Infonomics, University of Maastricht and Betlecon Research GmbH.
http:/ /www.infonomics.nl/FLOSS/teport/FLOSS_Final4.pdf.

Gilbert, A. (2003), ‘CRM Software ot CRM Shelfware’, CNET News .
http://news.com.com/2100-1012-990880.html [Feb 21, 2007].

IDC Software Consulting (2004), “The Linux Marketplace—Moving from Niche to
Mainstream’, Prepared for Open Source Development 1abs (OSDL) .
http://old.linux-foundation.org/docs/linux_market_overview.pdf [Feb 21, 2007].

Johnson, J., Boucher, K. D., Connors, K. & Robinson, J. (2001), ‘Collaborating on Project
Success’, Softwaremag .
http:/ /www.softwaremag.com/archive/2001feb/CollaborativeMgt.html [Feb 21, 2007].

Kerner, S. M. (2006), ‘Coverity Study Ranks LAMP Code Quality’, Internetnews.com .
http://www.internetnews.com/stats/article.php/3589361 [Feb 21, 2007].

Krass, P. (2002), ‘A Terrible Thing to Waste’, CFO IT .
http:/ /www.cfoeurope.com/displayStory.cfm/1739037 [Feb 21, 2007].

Microsoft Corp. (2006), ‘Form Q-10 For the Quarter Ended March 31, 2006°, Prepared for
United States Securities and Exchange Commiission . http:/ /www.mictosoft.com/msft/
download/FY06/MSFT_3Q2006_10Q.doc [Feb 21, 2007].

Raymond, E. S. (1999), The Cathedral and the Bazaar: Musings on Linus and Open Source from an
Accidental Revolutionary, O’Reilly & Associates, Cambridge.

U.S. Bureau of Labor Statistics (20006), ‘Occupational Outlook Handbook (OOH), 2006-07
Edition’, online handbook. http://www.bls.gov/oco/ [Feb 21, 2007].

U.S. General Accountion Office (1997), Tmmature Software Acquisition Processes Increase
FAA System Acquisition Risks’, Prepared for Chairman, Subcommittee on Transportation,
Committee on Appropriations, House of Representatives .
http://ntl.bts.gov/lib/000/200/234/2i97047.pdf [Feb 21, 2007].

U.S. Office of Technology and Electronic Commerce (2003), ‘Size of the U.S. Computer
Software Industry’, online report. http:/ /web.ita.doc.gov/ITI%5CitHome.nsf/
AutonomyView/87200518f179196¢85256cc40077edel [Feb 21, 2007].

29

http://www.wired.com/news/linux/0,1411,66022,00.html
http://www.infonomics.nl/FLOSS/report/FLOSS_Final4.pdf
http://news.com.com/2100-1012-990880.html
http://old.linux-foundation.org/docs/linux_market_overview.pdf
http://www.softwaremag.com/archive/2001feb/CollaborativeMgt.html
http://www.internetnews.com/stats/article.php/3589361
http://www.cfoeurope.com/displayStory.cfm/1739037
http://www.microsoft.com/msft/download/FY06/MSFT_3Q2006_10Q.doc
http://www.microsoft.com/msft/download/FY06/MSFT_3Q2006_10Q.doc
http://www.bls.gov/oco/
http://ntl.bts.gov/lib/000/200/234/ai97047.pdf
http://web.ita.doc.gov/ITI%5CitiHome.nsf/AutonomyView/87200518f179196c85256cc40077ede1
http://web.ita.doc.gov/ITI%5CitiHome.nsf/AutonomyView/87200518f179196c85256cc40077ede1

