
This article has originally been
published in German as part of the

GNU GENERAL PUBLIC LICENSE Version 2, June 1991 Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA Everyone is per-
mitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation‘s software and to any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things. To protect your rights, we need to make
restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the soft-
ware, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so they know their rights. We protect your rights with two steps: (1) copyright the software, and (2)
offer you this license which gives you legal permission to copy, distribute and/or modify the software. Also, for each author‘s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modifi ed by someone else and passed on, we want its recipients to know that what they have is not the origi-
nal, so that any problems introduced by others will not refl ect on the original authors‘ reputations. Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone‘s free use or not licensed at all. The precise terms and conditions for copying, distribution and modifi cation follow. TERMS AND CONDITIONS FOR COPYING, DISTRI-
BUTION AND MODIFICATION 0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this
General Public License. The „Program“, below, refers to any such program or work, and a „work based on the Program“ means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or with modifi cations and/or translated into another language. (Hereinafter, translation is included without
limitation in the term „modifi cation“.) Each licensee is addressed as „you“. Activities other than copying, distribution and modifi cation are not covered by this License; they are outside its
scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the Program does. 1. You may copy and distribute verbatim copies of the Program‘s source cod e as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program. You may charge a fee for the physical act of trans-
ferring a copy, and you may at your option offer warranty protection in exchange for a fee. 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifi cations or work under the terms of Section 1 above, provided that you also meet all of these conditions: a) You must cause the
modifi ed fi les to carry prominent notices stating that you changed the fi les and the date of any change. b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License. c) If the modifi ed program normally
reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appro-
priate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required
to print an announcement.) These requirements apply to the modifi ed work as a whole. If identifi able sections of that work are not derived from the Program, and can be reasonably consi-
dered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute
the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it. Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program. In addition, mere aggregation of another work not based on the
Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License. 3. You may
copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following: a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sectio ns 1 and 2 above on a medium customarily
used for software interchange; or, b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing
source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or, c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.) The source code for a work means the preferred form
of the work for making modifi cations to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface defi nition fi les,
plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distri-
buted (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accom-
panies the executable. If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from
the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code. 4. You may not copy, modify, sublicense,
or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically termi-
nate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance. 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its deriva-
tive works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it. 6. Each time you redistribute the Program (or

Open Source
Jahrbuch 2007

Bernd Lutterbeck
Matthias Bärwolff
Robert A. Gehring (Hrsg.)

Zwischen freier Software und Gesellschaftsmodell

O
pen Source Jahrbuch 2007

available at www.opensourcejahrbuch.de.

TheOpen Source Jahrbuch 2007 is an extensive compendium dealing
with the various aspects of open source software and beyond.
Whilst most articles have been written in German, this is one
of the articles that have originally been written in English and
subsequently been translated into German. Refer to our website
for more English articles.

www.opensourcejahrbuch.de

Linux Adoption in the Public Sector

HAL VARIAN AND CARL SHAPIRO

(CC-Licence 2.5, see
http://creativecommons.org)

This article analyses the prospect of Linux adoption in the public sector. We
conclude that the free operating system compares very favourable to common
proprietary alternatives. Using Linux avoids the lock-in that typically results
from opting for proprietary software, for its code as well as its interfaces are
open. Using open source in the public sector also has positive effects on the
software industry at large resulting in an overall improvement of a nation's
economy.

Keywords: Public administration · Software quality · Open interfaces ·
Lock-in effects

1 Introduction

The Linux operating system offers information technology managers in both the
private and public sector an increasingly attractive option as a computing platform,
particularly to run powerful computer servers.1 Platform software adoption decisions
typically have lasting implications for subsequent adoption of application software as
well as additional platform software itself.2 The signi�cance of the Linux adoption
decision is further magni�ed, and made more complex, by the fact that Linux is
open source software (OSS), in contrast to proprietary software. On top of all
that, widespread public-sector adoption of open source platform software can greatly

1 Server computers, �serve up� information or services to end users and generally operate without
continuous human supervision. Server hardware may take the form of mainframes, workstations, and
personal computers, with the choice depending on the scale and operating requirements of the job.
Desktop computers, in contrast, are the common �personal computers� used for a variety of interactive
tasks such as word processing, calculating, email, and web browsing.

2 Platform software, which includes operating systems, is software that offers various services to applications
software, which is written to run on top of the platform software.

http://creativecommons.org

Hal Varian and Carl Shapiro

affect the economic development of a country's entire software industry, a critically
important consideration for public-sector decision makers.
Given the complexity and importance of the decision whether to adopt the Linux

operating system, we believe that an accessible discussion of the costs and bene�ts
of adopting Linux, rather than a proprietary version of UNIX or Windows, rooted in
proven economic principles regarding software markets, will be helpful to public-sec-
tor decision makers. This paper is our contribution to that discussion.
While focused on Linux, our discussion necessarily ranges more broadly into the

economics of software markets and the differences between the traditional model of
development of proprietary software and the OSS model used by Linux, Apache, and
other popular open source software. For background information on the economics
of software markets see our article in this volume (Varian & Shapiro 2007); readers
seeking to explore these concepts in greater depth are encouraged to look at our book
(Shapiro & Varian 1999).
This paper is structured as follows. First, we offer a brief outline of our principle

�ndings and recommendations. Section 3 of this paper de�nes and explains the
key concepts of OSS, proprietary software, and open and proprietary interfaces. We
stress here that OSS inter-operates with, and complements proprietary software. We
also identify some of the underlying economic conditions that are favorable to the
open source model of software development. Section 4 goes on to apply these
general principles to evaluate the bene�ts and costs of Linux adoption from the user's
perspective; this analysis applies equally to private- and public-sector users. Last, we
brie�y make some additional considerations about the role of public-sector decision
makers, especially with regard to the impact of the platform software choice on the
economic development of a country's software industry.

2 Findings and Recommendations

Our principal �ndings and recommendations are as follows:

Critical Mass The Linux operating system has achieved a �critical mass� suf�cient to
assure users that it will be available and improved for years to come, reducing
the risk to users and to software developers of making investments associated
with Linux.

Attractive Features The Linux operating system has a number of very attractive fea-
tures for information technology managers in both the private and public
sectors: users adopting Linux are less likely to face �lock-in� than those adopt-
ing proprietary platform software, and they retain greater control over their
own computing environments. These bene�ts are especially salient in complex
computing environments where large users bene�t from the ability to customize
their software environment, as often occurs in the public sector.

2

Linux Adoption in the Public Sector

Open Interfaces Open source software, such as Linux, typically uses open interfaces.
Some proprietary software uses open interfaces, some uses proprietary inter-
faces. Open interfaces typically lead to a larger, more robust, and more innova-
tive industry and therefore software with open interfaces should be preferred
by public sector of�cials, as long as it offers comparable quality to proprietary
alternatives.

Bene�ts Local SMEs 3 Because Linux is open source platform software, adoption of
Linux can help spur the development of a country's software sector, in part by
promoting the training of programmers that enables them to develop applica-
tions that run on the Linux platform The adoption of the Linux platform may
well promote the economic development of proprietary software and services
to run in that environment.

Best of Both Worlds Fears that the licensing terms associated with Linux discourage the
development of commercial software aremisplaced. The fact that Linux is open
source software in no way requires that the development of application software
running on Linux follows an open source model. Rather, we expect mixed
computing environments�involving open source software and proprietary
software, that employ both open and proprietary interfaces�to �ourish in the
years ahead.

3 Discussion of Open Source and Proprietary Software

GNU/Linux is the leading example today of OSS.4 Managers considering adopting
Linux need to understand how the open sourcemodel of software development works,
and how OSS complements proprietary software. To aid in that understanding, we
offer here a more general discussion of OSS, proprietary software, and software
interfaces. This material will serve as a useful foundation when we evaluate the
bene�ts and costs of adopting Linux.

3.1 Open Source and Proprietary Software

OSS is software forwhich the source code5 is available to the public, enabling anyone to
copy, modify and redistribute the source code. Access to the source code allows users

3 Small and Medium Size Enterprises (SME).
4 The software operating environment commonly referred to as �Linux� should more properly be called

GNU/Linux since it is a combination of software from the Free Software Foundation (which developed
GNU) and the software kernel developed by Linus Torvalds. GNU is an acronym for GNU's Not
Unix.

5 Programmers write software in various computer languages such as Fortran, C/C++, and Java. The
original format in which the software is created is called source code. This source code is then compiled
into an executable, binary, or object code format that runs on the computer.

3

Hal Varian and Carl Shapiro

or programmers to inspect and understand the underlying program; they can even
extend or modify the source code, subject to certain licensing restrictions discussed
below.
Proprietary software, by contrast, is software that is distributed under proprietary

license agreements, usually for a fee. While there are many different approaches to
proprietary software licensing, it is frequently the case that the user of proprietary
software does not receive the copyrighted software source code and typically cannot
redistribute the software itself or extensions to that software. Companies that develop
proprietary software typically employ intellectual property protection to maintain tight
control over the source code they develop.

3.2 Open and Proprietary Interfaces

Virtually no piece of computer software operates in isolation. Therefore, software
interfaces�the methods by which one software program interacts with another,
with users, and with hardware�are critical to software functionality and to users.
Software interfaces are especially important in the complex computing environments
that characterize government agencies and large commercial establishments.
We can distinguish three different sorts of software interfaces:

Application Programmer Interfaces, commonly known as APIs, which describe how ap-
plications request services from the operating system.

User interfaces, which describe how software appears to and interacts with a user.

Document formats, which describe how applications store and interpret data.

We may also distinguish between open and proprietary interfaces. An interface that
is controlled by a single group and not available for everyone to use freely is called
a proprietary interface. Many commercial software companies maintain proprietary
interfaces; �le formats are a common example. Alternatively, an interface that is fully
described in publicly available documents and available for anyone to use freely is
an open interface.6 For example, Open Document Format (ODT) is a standard for
editable of�ce documents completely speci�ed by the OASIS industry consortium
and freely available to the public while not being under exclusive control of but one
company so it is an open interface.7 Interfaces associated with OSS are typically open
since they are fully described in the source code.
Open interfaces offer many advantages to users and to software developers. They

tend to increase consumer choice and promote competition. They also make it easier

6 An open interface is documented and freely available for use by everyone without restrictions from its
authors. There are some gray areas, such as published interfaces controlled by a single group; published
interfaces whose use is restricted; interfaces which are shared among a designated group, but not public;
multiple interfaces, and so on. The pure cases described above are adequate for our purposes.

7 See http://www.oasis-open.org.

4

http://www.oasis-open.org

Linux Adoption in the Public Sector

for various programs to retain compatibility with each other as they are improved over
time. As we discuss at length in our book (Shapiro & Varian 1999), software vendors
as well as users can bene�t when open interfaces are established, thereby avoiding a
�standards war� between incompatible, proprietary interfaces.

3.3 Complementarity between Open Source and Proprietary Software

By highlighting the fundamental differences between OSS and proprietary software
as models of software development, we do not mean to suggest that users must chose
one or the other type of software to serve all of their computing needs.
To the contrary, we believe strongly that OSS and proprietary software can, and

will, co-exist and complement each other in the years ahead. For example, a number
of proprietary software applications�such as IBM's WebSphere, databases programs
sold byOracle and by IBM, and many other applications�run on the Linux operating
system. Likewise, OSS�including much of the GNU software�runs on Sun's Solaris
operating system as well as onMicrosoft'sWindows operating system.
For precisely these reasons, a government agency adopting Linux is by no means

precluded from also picking proprietary software for many of its applications running
on Linux. In fact, the transparency of the Linux source code and the open interfaces
between Linux and application software are bene�ts for those seeking to develop
commercial software applications running on Linux.

3.4 Economic Conditions Conducive to Open Source Software

Users around the world stand to bene�t asOSS competes against proprietary software.
We fully expect each type of software to bemore successful in some areas and welcome
this diversity as part of the process by which competition will unfold in the software
sector. Linux in particular bene�ts from a set of favorable market conditions:

Proven Track Record Linux has a proven track record for running large, reliable com-
puter systems in a cost-effective manner.

Flexibility and Control Many users value the �exibility they enjoy, and the control they
retain, from using Linux rather than proprietary software for their server oper-
ating systems.

Broad Adoption Linux already has a large installed base of users, which stimulates the
supply of applications running on Linux as well as the supply of programmers
familiar with Linux.

Robust Community Linux draws on the skills of a diverse and robust developer com-
munity, fueled by the fact that developers can gain status or recognition from
participation in the Linux effort.

5

Hal Varian and Carl Shapiro

Governance Structures Linux has the leadership and institutions necessary to prevent
splintering and to establish a roadmap.

Corporate Backing Linux has strong support from major technology companies that
stand to bene�t by offering an integrated package thatmeets users' needs and/or
selling complements to the Linux operating system. Leading examples include
Red Hat offering enterprise platforms and services, Intel selling processors,
and IBM selling servers and associated services.

4 Linux Adoption: Bene�ts and Costs to Users

We are now ready to systematically consider the bene�ts and costs to users of adopt-
ing the Linux operating system as a �platform� on which to build their computing
environment. As noted above, a great many large organizations in both the private
and public sectors have already adopted Linux. Here we provide information to help
others decide whether this choice makes sense for them.

4.1 Total Cost of Ownership

Industry experts and consultants widely agree that users should consider the total
cost of ownership (TCO) of a software package when making long-lasting software
adoptions decisions. While not controversial in principle, determining the TCO is
practice can be very complex indeed. To begin with, the purchase price of software,
while easily measured, is only one component of the total cost of ownership (TCO).
User training, maintenance, upgrades and technical support can contribute far more to
the TCO than does the initial purchase price of software. Because many of these costs
arise after the original software purchase, cost comparisons are only meaningful if they
consider costs over a project's entire lifetime. In fact, it is often important to look
beyond the lifetime of the speci�c project for which the initial adoption decision was
made, since the data, training, and procedures adopted in one project often survive
the project.
There have been several attempts to compare the TCO of Windows and of Linux

in various computing environments.8 In most of the studies the difference in TCO
is on the order of 10 or 15 percent. This difference is not large; a 10 percent
difference in TCO could easily be swamped by local conditions, random events, and
other considerations. To a �rst approximation, it seems reasonable to suppose that
neither of these two platforms has a striking advantage over the other in terms of
conventional measures of TCO.
One of the most important components of TCO is the labor cost of system

administrators and support personnel. The studies cited above generally use wages

8 Two studies prepared at the request of IBM : Robert Francis Group (2002) and Cybersource (2002).
See also a study by Bozman et al. (2002) commissioned by Microsoft.

6

Linux Adoption in the Public Sector

based on theUSmarket. These costsmay be dramatically lower in countries with lower
labor costs. Since the purchase price of Linux software is substantially lower than
proprietary alternatives, the TCO�which includes both the price of the software and
the labor costs necessary to support it�could be signi�cantly lower in such countries.

4.2 Switching Costs

Users are also well advised to pay careful attention to switching costs when making
adoption decisions. While the costs of switching to a new system are salient, the costs
of (subsequently) switching away from that system are also very important. Users
should be very wary of adopting a system that will be dif�cult to switch away from in
the future, in part because the lock-in associated with using such a system will reduce
their future bargaining power with their vendor.
Vendors always have some incentive to make it dif�cult for users to switch to

alternatives, while the users will generally want to preserve their �exibility. From
the user's viewpoint, it is particularly important to make sure that �le formats, data,
system calls, APIs, interfaces, communication standards, and the like are well enough
documented so that it is easy to move data and programs from one vendor to another.
Clearly, OSS, with its open interfaces, offers an advantage to users over proprietary

software with proprietary interfaces in this important respect. Of course, proprietary
software can neutralize this advantage if it offers truly open interfaces. One of the
bene�ts of supporting OSS in general, and Linux in particular, is the resulting pressure
brought to bear on proprietary software vendors to open their own interfaces, to the
bene�t of users.
It is also worth noting that the dominant player in an industry typically has an

incentive to maintain control over its interface and make it dif�cult for other vendors
to interoperate. Conversely, industry players who are not in a dominant position have
very strong incentives to interoperate with the dominant player, and, for that matter,
with each other.

4.3 Software Quality

There are several dimensions to software quality. Reliability, maintainability, usability,
security, and �exibility are all important. Anyone contemplating an adoption decision
must weigh the relative importance of these factors in their own environment before
selecting a system. The relationship between the alternative models of software de-
velopment and any of these quality metrics is often easiest to explain by describing
the relative merits of Windows and Linux. It is important to remember, though, that
these systems are hardly �representative.� They are two of the best software packages
currently available, and play central, de�ning roles in computing environments. It is
thus inappropriate to extrapolate directly from Linux to other open source projects,
or from Windows to other software whose developers chose to keep its source code

7

Hal Varian and Carl Shapiro

secret; comparisons of other pairings could lead to different conclusions. Neverthe-
less, certain comparisons can highlight the ways that the development models point
towards different quality tradeoffs.

Reliability

The reliability of certain OSS programs has long been recognized. The fact that
Linux powers large websites such as Google is testimony to its reputation for relia-
bility. Windows reliability has improved signi�cantly in recent releases, but it is still
debatable whether it has reached the same level as Linux. In the FLOSS Survey of
1 452 European organizations, 83% of the respondents reported that �higher sta-
bility� was a very important or an important reason for adopting OSS (Gosh et al.
2002).
Recent Microsoft operating systems are reputed to be more reliable than earlier

releases. But they still appear to suffer from an inherent architectural disadvantage
compared to Linux: the lack of a truly modular design. In fact, some have argued
that Linux's reliability is an outgrowth of its modular design. It is easier to replace
parts of a modular software system without affecting the way other parts operate than
it is to replace corresponding parts of a holistic, integrated system. Such modularity
is virtually a requirement of systems developed by multiple programmers operating
more-or-less independently�a factor inherent in the open source developmentmodel.

Maintainability

Maintainability refers to the ease of keeping a system updated and running. In the
past, updating packages on Linux has been easier than on Windows because Linux
uses standardized package management techniques to control complexity. All �les
for a given program are generally stored in a few, well-documented places. Most
con�guration �les are text-based so that people can read them more easily. Again,
recent releases of Windows have reportedly included improvements in system main-
tainability, so that now patches and updates can be applied almost automatically. In
the FLOSS Survey, however, 60% of the respondents cited �operation and admin-
istration cost savings� as a very important or important reason to use Linux (Gosh
et al. 2002).

Usability

Usability testing is an inherently costly activity, and single-proprietor software plat-
forms retain a long-standing edge over their open source competitors in this re-
gard�particularly on the desktop. Microsoft has invested heavily in applications
usability in recent years, but some high-pro�le open source desktop environment
projects such asGNOME andKDE have also made signi�cant progress over the last
years.

8

Linux Adoption in the Public Sector

Plus, Linux allows the user to customize the user environment extensively, so
different users can use different environments. It is possible to con�gure standard
Linux operating environments to look and operate a lot like Windows, making it
relatively easy for users to migrate from one system to another. As graphical user
interface technology continues to mature, �revolutionary� new features will become
fewer and further in-between, thus giving competitors more time to respond to any
signi�cant advances. As a result, the usability of desktop Linux software is likely to
continue to advance (Nichols & Twidale 2003).

Security

There has been an ongoing debate about the relative security of Windows and Linux.
Linux is inherently a multi-user system and has many built-in safeguards to manage
user security. Since the source code of the system is available and many developers
actually access it, it is much easier to detect bugs. This cuts two ways: it is easier
both for attackers to detect bugs and for defenders to �x them. Once a bug is
detected, veri�cation of the problem is easier with OSS, because anyone can inspect
the source and analyze the bug. Furthermore, open source allows knowledgeable
users to con�gure their own systems to eliminate common vulnerabilities. The
NSA's Security-Enhanced Linux (SE Linux), for example, strips away various kinds of
functionality in order to emphasize security. Offering open source for a secure system
is some assurance for potential users that there are no back doors or other security
�aws.9

Flexibility

OSS is �exible, in the sense that it can be customized or modi�ed to speci�c needs.
The ability to customize open source facilitates experimentation and adaptation, which
has led to a considerable amount of �user innovation� (von Hippel 2002). Linux has
been developed into a host of previously unforeseen directions.10 In particular, the
following aspects have received emphasis by various development and customization
efforts:

Small One form of customization is the elimination of all parts of Linux other than
those directed to a speci�c narrow task. Mindi Linux, for example, �ts on single

9 Users of open source software are convinced that it has better security properties. In the FLOSS
Survey, 75% of the respondents said �better access protection� was a very important or important
reason for adopting open source software (Gosh et al. 2002).
Noted security expert Ross Anderson uses a theoretical model of software quality to argue that to

the �rst order, open and closed software systems have the same level of reliability (Anderson 2002).
10 An impressive list of the huge variety of Linux distributions can be found at http://lwn.net/
Distributions. The list includes distributions for special hardware requirements,for visually impaired
users, for ISPs, for real time applications (such as device monitoring), for multimedia, and for a vast
number of other needs.

9

http://lwn.net/Distributions
http://lwn.net/Distributions

Hal Varian and Carl Shapiro

�oppy disk and can be used for data recovery. Coyote Linux, Trinux, and the
Linux Router Project also offer single �oppy implementations of Linux that are
optimized for various applications, such as networking. The various �avors of
embedded Linux11 are used for special purpose hardware such as cash registers,
personal digital assistants (PDAs), personal video recorders, such as Tivo, MP3
players and the like.

Bigger and More Powerful With Linux, computers can be clustered together to build
more powerful computational engines that can be used for a variety of purposes
such as data mining, �le serving, database serving, or web serving, to �ight
simulation, computer graphics rendering, weather modeling. Recently Linux
developers have been active in implementing grid computing, which allows
organizations to harness computing power from large arrays of computers
distributed over the Internet.12

Highly Secure We have already mentioned the NSA implementation of secure Linux,
but this is just one of several projects to �harden� Linux. Other examples
include Engarde Linux and Bastille Linux.

Localized It is no accident that open source is hugely popular with smaller language
communities. They have often wanted applications that worked well in their
native languages andwere unable to �nd such applications in existing proprietary
software offerings. Thus, they wrote their own open source versions.13

Linux allows for a level of freedom in customization and in-house development that
is impractical to achieve with proprietary software. Thus, managers seeking �exibility
and control are well advised to opt for Linux and build the in-house expertise needed
to realise the full bene�ts of open source.

5 Open Source in Education and Economic Development

The �rst duty of public of�cials making choices about software platforms is to chose
the system that is best suited to the task at hand. As we have seen, there are many
cases where performance, reliability, and security of Linux is equal or superior to
that of proprietary alternatives. When two systems have similar suitability for a given
task, open interfaces become an important consideration since they typically lower
the cost of interconnection and reduce switching costs, making it less likely that
the customer will become locked in to a single vendor. Open interfaces encourage

11 For information on embedded Linux systems see http://www.linuxdevices.com.
12 The Linux Clustering Information Center (http://lcic.org) provides details.
13 For partial lists of localized implementations of Linux, see http://www.linuxselfhelp.com/
cats/localization_language.html and http://www.linux.org/docs/ldp/howto/HOWTO-INDEX/
other-lang.html.

10

http://www.linuxdevices.com
http://lcic.org
http://www.linuxselfhelp.com/cats/localization_language.html
http://www.linuxselfhelp.com/cats/localization_language.html
http://www.linux.org/docs/ldp/howto/HOWTO-INDEX/other-lang.html
http://www.linux.org/docs/ldp/howto/HOWTO-INDEX/other-lang.html

Linux Adoption in the Public Sector

third-party developers to create applications, add-ons, and complementary products.
The bene�ts of such products to users, and even to entire countries are so great that
virtually every software vendor wants to claim openness. But the important question
to ask is whether they really have an incentive to deliver on this claim, not only now,
but down the road when costs of switching to an alternative system could be very
large.
Countries hoping to stimulate a strong domestic software industry should look �rst

to their university system and ask �what environment will be most helpful in educating
our future software developers?� Open interfaces are critical since they allow for
local development of third-party applications. Open source platform software and
proprietary platform software with open interfaces both offer such opportunities to
local software companies. In contrast, proprietary platform software with proprietary
interfaces can leave third-party developers at a strategic disadvantage relative to the
company controlling the interface between the platform software and applications.
Such a strategic dependency can discourage local investment of money and human
resources in the development of proprietary applications software.
Open source also plays an important role in that it exposes the inner workings of

the software so that students can see just how quality software is put together. Just
as aspiring auto mechanics need to actually work on real engines, aspiring systems
engineers need to work on real operating systems. Having such systems available, and
open to scrutiny, will lead to better computer scientists, and better products in the
future.

6 Conclusion

Open source software is here to stay. What was once a novel, even heretical, approach
to software development has now been proven to work in practice. Viable business
models exist for OSS developers, and users stand to bene�t by selectively adopting
OSS alongside proprietary software.
Linux, in particular, has matured into a prime example of a successful open source

project by developing durable institutions that enable compatible improvements to
the Linux code. Many users in both the private and public sectors stand to bene�t
substantially from adopting Linux in their computing environments. Linux has been
proven to work well in the most demanding computing environments, offering an
array of substantial advantages to many adopters: reliability, �exibility, security, and
the avoidance of lock-in to a proprietary solution.
Public sector technology managers have additional reasons to adopt Linux. Adop-

tion of Linux platform software promotes the training of software engineers and
provides an open platform on which proprietary or open source applications can be
built, thereby spurring the development of a robust domestic industry. Certainly, any
government information technology manager seeking to put in place a �exible com-

11

Hal Varian and Carl Shapiro

puting environment that also helps promote the domestic software industry should
give serious consideration to Linux, and, indeed, open source software in general.

References

Anderson, R. (2002), Security in Open and Closed Systems: The Dance of Boltzman, Coase,
and Moore, Working Paper, Cambridge University. http://www.cl.cam.ac.uk/ftp/
users/rja14/toulouse.pdf [Jan 27, 2007].

Bozman, J., Gillen, A., Kolodgy, C., Kusnetzky, D., Perry, R. & Shiang, D. (2002), Windows
2000 Versus Linux in Enterprise Computing, IDC White Paper, IDC.
http://www.microsoft.com/windows2000/docs/TCO.pdf [Jan 27, 2007].

Cybersource (2002), Linux vs. Windows: Total Cost of Ownership Comparison, Study,
Cybersource. http://www.cyber.com.au/cyber/about/
linux_vs_windows_tco_comparison.pdf [Jan 27, 2007].

Gosh, R., Krieger, B., Glott, R. & Robles, G. (2002), FLOSS � Free/Libre and Open Source
Software, Survey and Study commissioned by the EU, International Institute of
Infonomics, University of Maastricht und Berlecon Research GmbH.
http://www.infonomics.nl/FLOSS/report/ [Jan 27, 2007].

Nichols, D. M. & Twidale, M. B. (2003), `The Usability of Open Source Software', First Monday
8(1). www.�rstmonday.org/issues/issue8_1/nichols/ [Jan 27, 2007].

Robert Francis Group (2002), Total Cost of Ownership for Linux in the Enterprise, Study,
Robert Francis Group.
http://www.ibm.com/linux/RFG-LinuxTCO-vFINAL-Jul2002.pdf [Jan 27, 2007].

Shapiro, C. & Varian, H. (1999), Information Rules: A Strategic Guide to the Network Economy,
Harvard Business School Press, Boston.

Varian, H. & Shapiro, C. (2007), The Economics of Software Markets, in B. Lutterbeck,
M. Bärwolff & R. A. Gehring, eds, `Open Source Jahrbuch 2007 � Zwischen freier Software
und Gesellschaftsmodell', Lehmanns Media, Berlin. http://www.opensourcejahrbuch.de.

von Hippel, E. (2002), Open Source Software Projects as User Innovation Networks, Working
Paper, MIT Sloan School of Management. http://idei.fr/doc/conf/sic/papers_2002/
vonhippel.pdf [Jan 27, 2007].

12

http://www.cl.cam.ac.uk/ftp/users/rja14/toulouse.pdf
http://www.cl.cam.ac.uk/ftp/users/rja14/toulouse.pdf
http://www.microsoft.com/windows2000/docs/TCO.pdf
http://www.cyber.com.au/cyber/about/linux_vs_windows_tco_comparison.pdf
http://www.cyber.com.au/cyber/about/linux_vs_windows_tco_comparison.pdf
http://www.infonomics.nl/FLOSS/report/
www.firstmonday.org/issues/issue8_1/nichols/
http://www.ibm.com/linux/RFG-LinuxTCO-vFINAL-Jul2002.pdf
http://www.opensourcejahrbuch.de
http://idei.fr/doc/conf/sic/papers_2002/vonhippel.pdf
http://idei.fr/doc/conf/sic/papers_2002/vonhippel.pdf

